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1. Introduction

These lectures are devoted to the exposition of recent results about the nature of
the singularity of the pressure and the free energy at a first order phase transition
[FrPf1], [Fr] and [FrPf2]. The main results of these works are summarized in [FrPf3].
There are two principal results, one concerning the nature of the singularity of the
pressure at a first order phase transition, which is proved at low temperature for
lattice models with finite state space, finite range interactions, with two periodic
ground states verifying the Peierls condition. The second one constitutes the bulk
of the PhD thesis of Sacha Friedli; it concerns the van der Waals limit of Ising models,
and how analyticity of the free energy is restored in this limit at a first order phase
transition point. This section is devoted to a selective historical introduction to the
subject.

1.1. 1869-1875. Andrews’ Bakerian Lecture to the Royal Society in 1869 was en-
titled “On the Continuity of the Gaseous and Liquid States of Matter” [An]. This
paper is famous for the first experimental proof of the existence of the critical tem-
perature, a term coined by Andrews himself in this paper. For the first time precise
measurements of several isotherms for carbon dioxide were performed above, below
and at the critical temperature. Andrews deduced that the ordinary gaseous and
ordinary liquid states are, in short, only widely separated forms of the same condi-
tion of matter, and can be made to pass into one another by a series of gradations
so gently that the passage shall nowhere present any interruption or breach of conti-
nuity. In 1822 Cagniard de la Tour had already found that if ether, alcohol or water
were heated in a sealed tube the volumes of the liquids increased by about two- to
four-fold, but eventually the liquid was apparently converted into gas1. But he had
no clear idea of the significance of this result. In my lectures it is not the critical
temperature Tc which is my interest, but the isotherms for temperatures T (well)
below Tc, where there are sharp breaks at the gas and liquid ends of isotherms when
the phenomenon of condensation takes place.

In 1871 James Thomson wrote a speculative paper [Th] about the isotherms
of a simple fluid2. After summarizing the experimental results of Andrews [An],
proving the existence of the critical point and the fact that one can pass from
the gaseous state to the liquid state by a course of continuous physical changes
presenting nowhere any interruption or breach of continuity, he wrote it will be my
chief object in the present paper to state and support a view which has occurred to
me, according to which it appears probable that, although there is a practical breach
of continuity in crossing the line of boiling-points from liquid to gas or from gas
to liquid, there may exist, in the nature of things, a theoretical continuity across
this breach having some real and true significance. This theoretical continuity, from
the ordinary liquid state to the ordinary gaseous state, must be supposed to be such
as to have its various courses passing through conditions of pressure, temperature,
and volume in unstable equilibrium for any fluid matter theoretically conceived as

1See beginning of [An].
2In 1871 Maxwell was writing his book Theory of Heat and he gave an account of the works of

Andrews and Thomson. Thomson’s ideas are discussed at p.124-127 in [M1], in the chapter which
is devoted to the isothermal lines, as well as to the experiments of Cagnard de la Tour and of
Andrews. There are few concrete arguments in this paper, and its importance cannot be compared
to van der Waals’ dissertation [vdW1].
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homogeneously distributed while passing through the intermediate conditions. Such
courses of transition, passing trough unstable conditions, must be regarded as being
impossible to be brought about throughout entire masses of fluids dealt with in any
physical operations. Whether in an extremely thin lamina of gradual transition from
a liquid to its own gas, in which it is to be noticed the substance would not be
homogeneously distributed, conditions may exist in a stable state having some kind
of correspondence with the unstable conditions here theoretically conceived, will be a
question suggested at the close of this paper . . ..
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Figure 1: Thomson’s isotherm below the critical temperature, pressure as function of volume.

Below the critical temperature, the theoretical isotherms proposed by Thomson
have a minimum and a maximum. Their interpretation, in 1871, is the one which
one finds in many text-books, and which is still taught today3. There is a well-
defined pressure, say corresponding to states C, E and G, where the fluid can be
in two different stable (equilibrium) states C and G, and such that one can pass
from one state to the other in a reversible way. This corresponds to a first order
phase transition point. What is still missing is the determination of that pressure4.
Maxwell published his “equal area rule” only in 1875. All states along the isotherm
between B and C correspond to stable liquid states, and similarly all states between

3See for example [Ca] chapter 9, or [CoM] chapter 8.
4In a correspondence with Thomson, Maxwell wrote (13 July 1871 [Ha2] 668-669): I should like

to hear from you if the proof I send gives a fair account of what Andrews and you have done and
more particularly if you have told me anything in confidence that you have not yet published mark
it out. I hope however that you will publish some of what you told me for the speculation seemed
of the fertile kind. [. . .]. The next difficulty is What determines the true boiling temperature of the
steam which is found to be so constant? In his reply (21 July 1871 [Ha2] 670-671) Thomson wrote:
I think it is not possible for the substance at the pressure indicated by B to pass into the gaseous
state & that if the liquid is in contact with its vapour at this pressure it is really found that the
liquid will not begin to pass into the gaseous state. On the contrary I think under the circumstances
stated it will all go down to the liquid state. Then Thomson made a similar statement for the state
H . Concerning the question of Maxwell about the true boiling temperature, Thomson wrote I
will answer rather a corresponding question [. . .]: What determines the true boiling pressures of
steam which is found to be so constant for any given temperature? I reply:- There is just one
intermediate point of pressure between the pressure at F and the pressure at D, at which the liquid
and its gas can be present together in contact with one another.
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H andG are stable vapour states. The states between C andD exist as homogeneous
liquid states, but are not equilibrium states. They represent superheated liquid
states and they are metastable states. Such states were experimentally observed in
1871. Similarly the states between G and F represent supercooled vapour states and
are metastable. Later, in his treatise on Thermodynamics §27 [Pl] Planck gives the
interpretation of the isotherms in the following terms: At all times, it is possible to
follow the isotherm beyond the point G towards the point F , and to prepare a so-called
supersaturated vapour. Then only a more or less unstable condition of equilibrium is
obtained, as may be seen from the fact that the smallest disturbance of the equilibrium
is sufficient to cause an immediate condensation. The substance passes by a jump
into the stable condition. Nevertheless, by the study of supersaturated vapours, the
theoretical part of the curve also receives a direct meaning. On the other hand,
Maxwell did not attribute any physical meaning to the unstable part of the isotherm
between D and F (see [M1] p.125), contrary to Thomson. In this respect van der
Waals wrote in [vdW1]5: The idea of joining C and G by a straight line, as is done
by Maxwell, is not a happy one. Since for these states the pressure is increasing as
the volume increases, they cannot be realized as stable (homogeneous) states, but
Thomson thought that they might be realizable at the interface between gas and
liquid. I shall come back to this important point when concluding this subsection.

Van der Waals published his famous dissertation in 1873 [vdW1], whose title in
English is almost identical to the title of Andrews’ Bakerian Lecture in 1869: “On
the Continuity of the Gaseous and Liquid States.” This fundamental work, its
consequences and later developments are analyzed thoroughly by Rowlinson in his
book [R2], where an English translation of van der Waals’ dissertation is also given.
See also [Kl]. It is in this work that appears the famous equation of state, which
can be written (

p+
a

v2

)(
v − b

)
= kT (1.1)

In that formula p is the externally applied pressure, v is the specific volume, or
v−1 the density, a/v2 (a > 0) is the molecular pressure arising from attraction
between the molecules. The first factor is interpreted as the total effective pressure.
The factor b is four times the effective volume of the molecule, so that the second
factor is the effective volume, per particle, within which the molecules can move.
The right hand side is proportional to the kinetic energy per particle, and T is the
absolute temperature. Van der Waals explained Andrews’ results on the continuity
of the gaseous and liquid states by his famous equation, and gave a solid theoretical
foundation to Thomson’s speculations. There exists a critical temperature Tc such
that for T > Tc there is only one real solution for v, given p and T . On the other
hand, if T < Tc there are three real solutions, and qualitatively the isotherms are
similar to those of Thomson.

Equation (1.1) was based on Clausius’ virial theorem, which relates the kinetic
energy of molecules to forces acting on them [Cl]. If vi is the velocity of particle i at
position xi, and Fi the resultant of all forces acting on particle i, then the average
over long times of the total kinetic energy (vis viva) is equal to the average of the
virial,

1

2
〈
∑

i

miv
2
i 〉 = −1

2
〈
∑

i

xi · Fi〉 .

5English translation, [R2] p.196.
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If the internal forces are central forces, then this expression becomes6

1

2
〈
∑

i

miv
2
i 〉 =

3

2
pV +

1

2

∑
i,j

rijφ(rij) .

In this formula V is the volume of the vessel containing the particles, p the pressure,
rij the distance between particles i and j, and φ(rij) the intensity of the force
between particles i and j, which is positive when the force is attractive.

This work received immediate recognition and Maxwell wrote a long review in
Nature in 1874 [M2]. At the beginning of his review Maxwell wrote: That the
same substance at the same temperature and pressure can exist in two very different
states, as a liquid and as a gas, is a fact of the highest scientific importance. A
large portion of the second part of Boltzmann’s Lectures on Gas Theory is devoted
to van der Waals’ theory [Bol]. Planck wrote in his treatise on Thermodynamics
[Pl], in paragraph §24: To van der Waals is due the first analytical formula for the
general characteristic equation, applicable also to the liquid state. He also explained
physically, on the basis of the kinetic theory of gases, the deviations from the be-
haviour of perfect gases. Later, in paragraphs §26, §27 and §28, Planck discusses in
details a modification of equation (1.1) due to Clausius, which fits observations on
the compressibility of gaseous and liquid carbon dioxide at different temperatures
fairly well. For a recent account of van der Waals’ equation see [ELi], which also
contains the derivation of (1.1) due to Ornstein from statistical mechanics [Or] (Lei-
den dissertation). It is based on the idea that the interaction pair potential between
particles consists in a repulsive hard-core that is short range and an attractive, weak,
long-range part. The theory is what is called today a mean-field type theory.

In the same year 1873 Gibbs published his important paper A Method of Geomet-
rical Representation of the Thermodynamic Properties of Substances by Means of
Surfaces [G1], where he gave a geometric characterization of the phase diagram by
introducing the energy-volume-entropy surface, which he called the thermodynamic
surface of the body7. Specifically he discussed the surface

u = u(s, v) u the energy, s the entropy, v the volume.

6See [Cl] or [LLi] pp. 113-114. The virial theorem is properly a theorem of analytic mechanics.
The term virial is due to Clausius [Cl]. It come from Latin vis (force). In [Cl], Clausius considers the
case of a large number of particles. The motion of the particles is stationary in the following sense:
By stationary motion I mean one in which the points do not continually remove further and further
from their original position, and the velocities do not alter continuously in the same direction, but
the points move within a limited space, and the velocities only fluctuate within certain limits.
Clausius made the following important remark concerning the time average: it is not necessary
to take the mean value of rφ(r) [rijφ(rij)] for each pair of atoms, but the values of rφ(r) may
be taken for the precise position of the atoms at a certain moment, as the sum formed therefrom
does not importantly differ from their total value throughout the course of the individual motions.
Consequently we have for the internal virial the expression

1
2

∑
i,j

rijφ(rij) .

The term 3
2pV is the result of the integration of the external forces over the boundary of the vessel,

after using Gauss’ divergence theorem (div(x) = 3).
7Gibbs made explicit reference to Thomson’s paper [Th], who also introduced a surface, but

for different quantities, namely the temperature, volume and pressure, so that the isotherms are
level-lines of that surface.
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The pressure and the temperature of the state, which is represented by a point of
the surface, give the directions of the tangent plane at that point,

p = −∂u
∂v

and T =
∂u

∂s
.

Gibbs remarked that this mode of representation applies also to the case in which the
system is not in a homogeneous state, for example, a state representing a mixture
of vapour and liquid in equilibrium. The surface obtained in this way is called
thermodynamic surface. He divided this thermodynamic surface into two parts: the
primitive surface, whose points correspond to homogeneous states, and the derived
surface, whose points do not correspond to homogeneous states8. His main point is
that there is a simple geometric relation between the primitive and derived surfaces,
which is a consequence of the fact that the volume, entropy and energy of the whole
body are equal to the sums of the volumes, entropies and energies respectively of
the parts, while the pressure and temperature of the whole are the same as those of
each of the parts. Knowing the primitive surface, one can reconstruct the derived
surface by rolling a tangent plane on the primitive surface. An important point is
that the form of the primitive surface is such that the rolling tangent plane does not
cut it; the thermodynamic surface is convex. He showed that the thermodynamic
equilibrium between gas and liquid is achieved at the pairs of points of contact with
the primitive surface of a rolling tangent plane. In the context of these lectures, the
following passage of Gibbs’ paper is relevant9: If there is no gap in the primitive
surface, there must evidently be a region where the surface is concave toward the
tangent plane in one of its principal curvature at least, and therefore represents states
of unstable equilibrium . . .. This hypothesis, there is no gap in the primitive surface,
leads to similar results as those of Thomson. Maxwell was enthusiastic about Gibbs’
surface. In a letter to T. Andrews10 he wrote: I think such graphical methods are
better fitted for purely conjectural applications of the principle of continuity beyond
the range of experiment than any empirical formulae.

At the end of 1874 Maxwell formulated the “equal area rule”. He announced
his result to G. Tait in the following terms11: In James Thomsons figure of the
continuous isothermal show that the horizontal line representing mixed liquid and
vapour cuts off equal areas above & below that curve. Do this by Carnots cycle.
That I did not do it in my book shows my invincible stupidity. This thermodynamic
argument was published in 1875 in [M3]. The value p∗ of the pressure, for which
there is a plateau in the isotherm, is determined by the condition

p∗(vg − vl) =

∫ vg

vl

p(v) dv ,

p(v) being the equation of the isotherm given by equation (1.1). Since the pressure
is given (up to the sign) by the derivative of the Helmholtz free energy, f = u− Ts,
which gives the maximum work that can be extracted from the system along any

8For example, in the case of the coexistence of vapour and liquid, a point of the derived surface
represents an inhomogeneous (macroscopic) state, where a portion α of the system is in the vapour
phase and a portion 1 − α is in the liquid phase. The vapour and liquid states are represented by
two different points of the primitive surface. There is breach of continuity.

9[G1] p.45.
1015 July 1875, [Ha3] pp. 236-238.
1128 December 1874 [Ha3] 155-156; see also [Ha3] 157-158.
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isotherm, Maxwell’s rule is equivalent to take first the convex envelope f ∗ of the
Helmholtz free energy f , and then to take the derivative, so that the pressure of the
isotherm with the plateau is given by

−p =
∂f ∗

∂v
.

To summarize these fundamental results obtained in this short period of time,
one can perhaps say that a salient feature of these experimental and theoretical de-
velopments is the emphasis on the idea of continuity12, which finds an experimental
basis in the work of Andrews about the existence of the critical point, and a firm
theoretical basis in the work of van der Waals. The van der Waals isotherms are an-
alytic curves. For each fixed value of the temperature below Tc Maxwell’s rule gives
the (unique) value of the pressure for which vapour and liquid coexist as equilib-
rium phases; thus, the equilibrium isotherms at low temperature have three distinct
analytic parts, the middle flat part defined through Maxwell’s rule corresponds to
physical situations where both the vapour and liquid coexist as equilibrium phases.
There are analytic continuations for the two other parts, which are given by the
van der Waals isotherm, and the parts of these analytic continuation where ∂p

∂v
< 0

are interpreted as superheated liquid states, respectively undercooled vapour states.
Even the more problematic part of the analytic isotherm, between the minimum and
the maximum of the isotherms, where ∂p

∂v
> 0, plays a role in the mechanical theory

of surface tension developed by Fuchs and Rayleigh13, and in the thermodynamic
theory of capillarity of van der Waals [vdW2]. The theory of van der Waals has been
revisited later by Cahn and Hilliard [CHi]. Suppose that the Helmholtz free energy
is written as a function of the density ρ, at fixed (low) temperature, ψ = ψ(ρ).
Here ψ is the analytic free energy, which is non-convex in the two-phase region.
Thomson’s idea, that the non convex part of Ψ(ρ) might be physically realizable in
the interface between equilibrium phases, is implementing as follows (see e.g. [W1]).
The surface tension, which is the excess of free energy in the inhomogeneous system,

12Maxwell, in his letter to Andrews quoted above, refers to the principle of continuity. Duhem,
who did not accept the atomistic model of thermodynamics, in contrast to Boltzmann, Clausius,
Maxwell, van der Waals and others, considers in his epistemologic treatise La théorie physique, son
objet - sa structure ([Du]), that la théorie de la continuité de l’état liquide et de l’état gazeux, is an
important theory of Physics ([Du] p.138-139). The van der Waals isotherms are analytic. Absence
of gap in Gibbs’ primitive surface is related to Thomson’s ideas. Furthermore, Andrews’ paper [An]
ends as follows: We have seen that the gaseous and liquid states are only distant stages of the same
condition of matter, and are capable of passing into one another by a process of continuous change.
A problem of far greater difficulty yet remains to be solved, the possible continuity of the liquid and
solid states of matter. [. . .] for the present I will not venture to go beyond the conclusion I have
already drawn from direct experiment, that gaseous and liquid forms of matter may be transformed
into one another by a series of continuous and unbroken changes. The following quotation of
Herschel’s Preliminary Discourse on the Study of Natural Philosophy is also worth mentioning in
relation with this idea of continuity (see [R2] p.4). Indeed, there can be little doubt that the solid,
liquid and aëriform states of bodies are merely stages in a progress of gradual transition from one
extreme to the other, and that, however strongly marked the distinctions between them appear, they
will ultimately turn out to be separated by no sudden or violent line of demarcation, but shade
into each other by insensible gradations. The late experiments of baron Cagnard de la Tour may
be regarded as a first step towards a full demonstration of this (§199). The reference to §199 of
his book is to “that general law which seems to pervade all nature - the law, as it is termed, of
continuity, and which is expressed in the well-known sentence “Natura non agit per saltum”.

13[R2] p.6.
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is assumed to be a functional of the density profile14 ρ(x, y, z) = ρ(x), x ∈ R, which
can be written as ∫

Ψ(ρ(x)) dx :=

∫ [
ψ(ρ(x)) +

1

2
Aρ′(x)2

]
dx .

This functional is the sum of two terms; ψ(ρ(x)) describes a completely homogeneous
state (perhaps unstable) at the local density ρ(x), and 1

2
Aρ′(x)2, which is a term due

to van der Waals [vdW2], is a first correction for deviations from uniformity. The
density profile between the vapour and the liquid phases, which are at equilibrium, is
assumed to minimize the surface tension subject to the boundary conditions imposed
to the system. Therefore, the non convex part of the free energy corresponding to
the metastable and unstable states plays a significant role in the above functional.
Without the second term, there would be no non-trivial density profile, since the
minimum of the functional would be attained by a profile with ρ(x) = ρg if x < x∗,
and ρ(x) = ρl if x > x∗; the point x∗, which gives the position of the interface,
is determined by the boundary conditions and the quantity of vapour, respectively
liquid, in the system.

Many works nowadays, about phase transitions and interfacial phenomena, are
based on functionals of the above type, with a non convex part ψ(ρ), which is
assumed to be an analytic continuation of the equilibrium free energy (see e.g.
[La2].) Maxwell’s equal area rule or Gibbs’s convex envelope of the free energy are
used to determine the phase coexistence points. Our main result is that, for short-
range interaction potentials, at least for a large class of models, such functionals
cannot be derived from first principles of Statistical Mechanics: there is no analytic
continuation of the free energy (and equilibrium isotherms) at a first order phase
transition.

1.2. 1937-1952. I shall not discuss the period from 1875 to 1937, although many
important papers in relation with phase transitions appeared during that period.
Systematic corrections for the law of perfect gases were studied from the virial ex-
pansion. Ferromagnetism was extensively studied and in particular mean-field type
theories were developed (Curie-Weiss model, Bragg-William approximation). Lat-
tice models were used to study phase transitions. For this period, see the essay
of Rowlinson [R2]. One of the achievements of nineteenth century physics was the
development of the statistical (i.e. microscopic) basis of thermodynamics, which
owes its origin to the desire to explain the laws of thermodynamics from mechanical
principles, and of which Clausius, Maxwell and Boltzmann are to be regarded as the
principal founders. But it is Gibbs’s work, in particular his monograph, Elementary
Principles in Statistical Mechanics, [G2], published in 1901, which is the basis of our
present formulation of equilibrium statistical mechanics. However, when this book
appeared, statistical mechanics was facing one of its biggest problems in relation
with the behaviour of various specific heats15. It is therefore remarkable that this

14One assumes that ρ(x) → ρg when x → −∞, and ρ(x) → ρl, when x → ∞. The system is
translation invariant in the other two directions.

15Gibbs wrote (p.vii-viii of [G2]): In the present state of science, it seems hardly possible to frame
a dynamic theory of molecular action which shall embrace the phenomena of thermodynamics, of
radiation, and of the electrical manifestations which accompany the union of atoms. Yet any theory
is obviously inadequate which does not take into account of all these phenomena. Even if we confine
our attention to the phenomena distinctly thermodynamic, we do not escape difficulties in as simple
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book gives the foundations of equilibrium statistical mechanics as we know it today.
Our understanding of phase transitions since the beginning of the 20th century is
based on the very successful application of the principles exposed in this monograph
to a wide variety of physical problems. However this confidence on the principles
developed in [G2] did not arise in one day, and the success of this fundamental
approach was slow16. The fact that we can describe with the help of a single math-
ematical expression, the partition function, both the liquid and the gaseous phases,
is a major step in our understanding of phase transitions.

The picture which emerges from the paper of Mayer, [Ma], to the paper of Yang
and Lee, [YLe], is very different from the preceding one: the emphasis is on the
idea of singularity. In a series of papers Mayer and his collaborators studied the
phenomenon of condensation. The first paper of the series published in 1937, [Ma],
prompted immediately several important papers, by Born and Fuchs [BF], Kahn’s
dissertation (1938) at Utrecht [Ka], Kahn and Uhlenbeck [KaU]. See also De Boer
[dB1]. The paper of Mayer was discussed at the Van der Waals Centenary Congress
in Amsterdam on November 1937. The results were presented by Born [B]. Born
wrote: I consider this work as a most important contribution to the development
of van der Waals theory, which ought to be reported at this meeting, in spite of
the fact that Mayer’s methods are rather difficult to understand and his results not
completely satisfactory. About this report we can read in [BF]: [it] was followed
by a vigorous discussion on the question as to whether Mayer’s explanation of the
phenomena of condensation is correct. Doubts about this point were raised by the
referee, because it is difficult to comprehend how a method of approximation such
as that of Mayer, starting from the gaseous state, can lead to the discontinuity of
the density on an isothermal curve which corresponds to condensation. The usual
methods for treating the equilibrium of the two phases introduce the equation of state
of both phases and derive the condition for their co-existence. Mayer’s theory does
nothing of this kind, but treats all possible molecular arrangements with their proper
weight, as if there were only one phase. How can the gas molecules “know” when
they have to coagulate to form a liquid or solids? Mayer’s mathematical method is
too involved to make this point quite clear17.

Indeed, a major problem, not touched by the theory of van der Waals, which
deals with pure homogeneous states only, is the mechanism leading to condensation.
Moreover, the horizontal part of the equilibrium isotherm corresponds precisely to
a region where the system is inhomogeneous. Instead of describing the state of a
system by its density only, Mayer tried to evaluate the (canonical) partition function
of a system composed of N particles inside a volume V , starting from the expansion

a matter as the number of degrees of freedom of a diatomic gas. It is well known that while theory
would assign to the gas six degrees of freedom per molecule, in our experiments on specific heat we
cannot account for more than five. Certainly, one is building on an insecure foundation, who rests
his work on hypotheses concerning the constitution of matter.

16In his 1960 lectures [UF], Uhlenbeck (p.32-34) listed three basic questions, which one would
like to answer on the basis of statistical mechanics: (a) the deviations from the ideal gas law, (b)
the condensation phenomenon, and (c) the existence of a critical temperature Tcrit. Then he wrote:
There are other general phenomena. At still smaller volume and probably at any temperature the
substance solidifies, and has the corresponding solid-liquid and solid-vapour equilibria. But the
explanation of these phenomena from the basic integral for Z(V, T,N) [partition function] is still
far from being accomplished . . .. This is still true today!

17See also footnote 26.
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of the partition function in terms of the cluster integrals (integrals of the Ursell func-
tions over the phase space). He assumed that the cluster integrals are independent
of the volume and are positive18 below the critical temperature. In his computation
he took into consideration all clusters; it is the statistics of the large clusters which
are decisive for the phenomenon of condensation. This was an important and novel
feature with respect to mean field type theories. One of the defects of the theory,
however, was the impossibility of computing the isotherm of the liquid phase19.

One can say that the essence of Mayer’s theory consists in the study of the ex-
pansion of the pressure,

p(z)

kT
=
∑
l≥1

blz
l (bl are the cluster integrals) ,

for small activity z. Mayer’s conjecture, as formulated by Fisher in [F], asserts that
the function p(z), defined by the power series and its analytic continuation, has, on
the positive real axis, a nearest singularity z = z1 which occurs at the condensation
point z = zσ. One of our results is that for short-range interaction potentials, at
least for a large class of models, this form of Mayer’s conjecture is correct at low
temperature. The pressure cannot be analytically continued beyond z = zσ, so that
z1 = zσ.

We cannot accept today all conclusions reached in [Ma]. However, from this pa-
per and subsequent papers, the following understanding emerged about the question
whether one can prove that, at sufficiently low temperatures, an isotherm consists
of at least three different analytic parts. The picture is very different from the one
in van der Waals’ theory. This is well expressed in the introduction of [KaU].
(1) The equation for an isotherm is derived solely from the partition function.
(2) In order to have three different analytic parts for the isotherm one must take
the thermodynamic limit20.
(3) In the thermodynamic limit one cannot obtain states corresponding to supersat-
urated vapour states for example. Only equilibrium states are obtained.

18Today we know that this is not correct.
19[F] is an excellent paper on this subject. See also [dB1], [dB2] and the foreword of Uhlenbeck

in [Ka]. For an account of Mayer’s theory, see [MaMa].
20This was emphasized by Kramers at the Van der Waals Centenary Congress, see [D]. He

pointed out that one is really interested not in the partition function itself, but in the thermo-
dynamic limit of the free energy. In this limit one may obtain non-analytic behaviour at certain
densities and temperatures. However, it is the work of Yang and Lee [YLe], which established
clearly this fact. It is true that in his famous paper [On] Onsager proved that the free energy of
the two-dimensional Ising model, in the thermodynamic limit, has a singularity in the temperature,
at zero magnetic field. But, this singularity is related to the critical point of the model, and is not
the singularity studied in these lectures.

Kramers’ statement about the thermodynamic limit should be taken cum grano salis. One
can state, as basic principle of statistical equilibrium thermodynamics: The partition function
for finite systems is the basic object. All equilibrium information about the system concerning
bulk properties, like here, but also about surface properties of the system, as for example the
wetting phenomenon [PfV], are encoded in the partition function. Since the number of particles
is very large, the bulk properties of the system are best described in the thermodynamic limit.
By considering the free energy in this limit, one singles out the bulk properties of the system. It
should be stressed again, that the validity of this principle is mainly due to many very successful
applications to a great variety of cases.
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These very clear statements were not mathematically demonstrated21 when they
were formulated by Kahn and Uhlenbeck. In 1949 van Hove [vH] proved the exis-
tence of the thermodynamic limit and convexity properties of the thermodynamic
potentials, which implies that the states on a isotherm correspond only to equilib-
rium states. For later mathematical works on this important question see [Ru]. In a
famous paper [YLe] Yang and Lee demonstrated in 1952 how in the thermodynamic
limit one can obtain singularities of the pressure, by accumulation on the real axis
of complex zeros of the partition functions. In another paper [LeY] they illustrated
this mathematical mechanism for the Ising model. It is, of course, one thing to
prove the existence of a thermodynamic limit for the partition function describing
both phases of a phase transition, but quite another thing to find out the exact
nature of the discontinuity at the phase transition. These papers do not contain
any information about the nature of the singularity of the pressure at a first order
transition22. The question whether one can have an analytic continuation at a first
order phase transition point is left open.

The mathematical deduction of the existence of a phase transition and of its
properties, from the study of the partition function only, is very difficult for realistic
models of physical systems. Motivated by the work of Mayer [Ma], several people,
Bijl [Bij] (Leiden dissertation), Band [Ban], Frenkel [Fre1], [Fre2] and Mayer and
Streeter [MaSt], introduced23 the droplet model, in order to give a crude, but simple
theory of condensation, which leads qualitatively to results comparable with those of
Mayer’s theory. Contrary to the work initiated in [Ma] this is a half-thermodynamics,
half-statistics theory. The title of [Fre2] is A General Theory of Heterophase Fluctu-
ations and Pretransition Phenomena, and in the abstract one reads: [The paper] is
based on the idea that the macroscopic transition of a substance from a phase A to a
phase B is preceded by the formation of small nuclei being treated as resulting from
“heterophase” density fluctuations or as manifestations of a generalized statistical
equilibrium in which they play the roles of dissolved particles, whereas the A phase
can be considered as the solvent. The heterophase or heterogeneous fluctuations
should be contrasted with the ordinary density fluctuations, which can be denoted
as homophase or homogeneous fluctuations. The gaseous state is composed of single
particles and of molecules or droplets containing several particles. The state of the
system is specified by the number mk of molecules with k particles, k ≥ 1. One
assumes that the interaction between droplets is negligible, and one postulates the
form of the free energy of a droplet of l particles, which is a sum of two terms, one
proportional to l (volume term) and another one proportional to l

2
3 , representing a

21See the quotation of Siegert’s paper [Si] in footnote 26.
22Chapter 15 of [Hu] (German edition (1964)) is an excellent exposition of these fundamental

results obtained by van Hove and Yang and Lee. See also chapter two of [UF]. The main result
in [YLe] is that, if a region of the complex plane is free of zeros of the partition functions, then
the pressure is analytic in that region. Accumulation of the zeros of the partition functions is a
necessary, but not sufficient condition for the existence of a singularity of the pressure. See [Sh]
for examples of accumulation of the zeros on some points of the real axis, without producing a
singularity of the pressure. For the mean-field Ising model there is accumulation of the zeros of
the partition functions at h = 0, when the temperature is low enough, since the pressure is not
analytic in the thermodynamic limit. But in this case, contrary to the theorem of Isakov, theorem
1.2, which is the main subject of these lectures, there is an analytic continuation of the pressure
at h = 0 (see section 5).

23See in particular [F] and [dB1] for a treatment of this model.
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boundary term, the surface free energy. This last term makes sense only for very
large droplets. However, it is the behaviour of the statistics of large droplets which
is important for the condensation phenomenon24.

1.3. The van der Waals limit. A remarkable achievement of mathematical physics
is the derivation of the van der Waals-Maxwell isotherms from statistical mechanics
in the limiting case of infinitely long-range and infinitely weak interactions25. Brout
in [Bro] studied the Ising model in this limit, in relation with the mean-field theory.
He tried to develop a perturbation around the mean-field limit. He showed how one
can recover this limiting case by taking the limit of infinitely long-range and infin-
itely weak interactions, so that the overall strength of the interaction is constant26.

24The premises of this model are very different from those of a mean field approach. There are
similarities and also important differences with the Pirogov-Sinai theory of phase transitions [PiSi].
In this theory the mechanism for phase coexistence is the following one. I consider only the case
where the system has two ground-states, which are denoted by ψ1, respectively ψ2. In this theory,
for sufficiently small temperatures, there are only two stable phases, called ψ1-phase, respectively
ψ2-phase. Generically only one phase is stable, except for specific values of the parameters of the
model.

Local perturbations of a ground-state are described by “geometric objects”, called contours.
(Usually the contours describing perturbations of the ground-state ψ1 differ from those of the
ground-state ψ2.) A contour has a size, which corresponds to the region where the perturbation of
the ground-state occurs. If the ψ1-phase is the only stable phase, then all ψ1-contours are stable (in
a precise mathematical sense), while large ψ2-contours are not stable. Stability of all ψ1-contours
(which is equivalent to say that the ψ1-phase is stable) implies that the ground-state is stable with
respect to local perturbations of any size, i.e. the ground-state for the infinitely extended system
is stable. This is the origin of the ψ1-phase.

More generally, if one considers a given region R of the ground-state ψj , then this region of
the ground-state ψj is stable if and only if all ψj-contours inside R are stable. Notice that inside
any given region R all possible perturbations occur with non-zero probability. The only way to
stabilize a region R of the ground-state ψj , when all ψj-contours inside R are not stable is to
suppress the unstable contours. This is precisely the basic idea of Zahradńık in his fundamental
paper [Z] about the Pirogov-Sinai theory.

An important difference with respect to the droplet model is that contours contain contours in
their interiors, typically ψ1-contours contains in their interiors ψ2-contours and vice-versa. The
stable ψ2-contours are precisely those that give rise to droplets of phase ψ2 inside the ψ1-phase.
Larger stable ψ2-contours allows larger regions of the ground-state ψ2-phase to become stable, and
thus the appearance of larger droplets of the ψ2-phase inside the ψ1-phase. As one approaches
a point of coexistence with the other phase (associated with ground-state ψ2), more and more
ψ2-contours become stable. It is precisely, when all contours of both phases become stable that
there is coexistence of the two phases. This happens at well-defined values of temperature and
chemical potential. The system “knows” when condensation takes place. The stability of contours
is a consequence of a delicate balance between volume versus surface effects. The subtle question
of non-existence of an analytic continuation of the pressure at a first order phase transition point
is also related to the stability/instability properties of the contours of both phases in a (complex)
neighbourhood of the coexistence point.

I thank R. Fernández for helpful comments on the Pirogov-Sinai theory.
25Systems with weak long-range potentials are reviewed in [HLeb]. See also [Leb].
26From [S]: The attitude of physicists toward the van der Waals equation has changed several

times since its birth in 1873. After the Ursell-Mayer expansion in the mid-thirties, the orthodox
view was that the van der Waals approximation was merely an extrapolation from the first two terms
of the virial series, and the equal area construction an ex post facto introduction of thermodynamics,
which would not be necessary if one could actually evaluate the partition function exactly, and obtain
from it the pressure in the thermodynamic limit (number of particles N → ∞, volume V → ∞,
with N/V = v fixed).
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Baker also studied a similar limiting case for a one-dimensional spin system, [Ba] .
However, the derivation of van der Waals’ equation in this limit is due to Kac, Hem-
mer and Uhlenbeck in [KUH1], [KUH3] and [KUH3] for a one-dimensional model of
N particles in an interval of length L, with hard-core of size δ > 0 and interacting
via an attractive interaction

−aγe−γr .

This model was introduced previously by Kac [K], who showed that the thermody-
namic limit L→ ∞, N → ∞ with l = L/N constant, can be computed exactly. The
free energy is equal, in this limit, to the maximum eigenvalue of a Hilbert-Schmidt
kernel. For finite γ the model does not exhibit a phase transition, since it is a one-
dimensional model with exponentially decaying interaction. However, if one takes
the limit γ tending to 0, so-called the van der Waals limit, after the thermodynamic
limit, then appears a phase transition, which is described by van der Waals’ equation(

p +
a

l2

)(
l − δ

)
= kT .

In 1964 van Kampen gave a derivation of van der Waals’s equation with Maxwell’s
rule [vK]. The arguments of van Kampen are “local mean field” type arguments.
This is the main and important difference with respect to a mean field theory, in
which the state of the system is described by one real quantity, the density. The
basic idea is that there are two scales. The system is divided into large cells, which
are small compared to the range of the attractive interaction, but large enough in
order to contain many of particles, and such that inside a cell one can use a mean-
field approximation. In this way Van Kampen obtained a coarse-grained description
of the model. The distribution of the particles is uniform over a cell, but not over
the whole system. The system can be partly in a gaseous phase or partly in a
liquid phase, and one can define a free energy for a given non-homogeneous coarse-
grained distribution, which is essentially the sum of the free energies of the cells.
The equilibrium free energy of the whole system is obtained by minimizing the free
energy over non-homogeneous coarse-grained distributions.

Lebowitz and Penrose [LebP], combining the ideas of van Kampen and the van der
Waals limit, proved the following remarkable result. Let ς : Rd → R, ς(x) = ς(|x|)
be a (positive) function with compact support in [−1, 1]d, so that∫

ς(x) dx = α > 0 .

There was, however, at that time no proof for any classical system that the van der Waals loops
would not result even from an exact calculation of the Gibbs integral and that phase transitions
were contained in the fundamental formalism of equilibrium statistical mechanics; and some very
respectable physicists expressed a minority view to the contrary still in the late thirties.

In the forties, however, the famous papers of Onsager and of van Hove appeared. [. . .]. The
latter proved the impossibility of van der Waals loops in the thermodynamic limit for systems of
particles with hard-core repulsive interaction and finite range interaction. [. . .].

All this seemed to close the case, but I remember Professor Uhlenbeck saying at that time, that
is in the late forties, that he was unwilling to believe that a theory which gave a qualitative and
semi-quantitative description of the isotherm, including the phase transition, did not have some
nucleus of truth in it.

The idea that this nucleus of truth would be a limit theorem stating that that the mean field
approximation should be exact in the limit of infinitely weak interaction of infinite range, must
have been in people’s minds; but I think it was first put in print by Brout in his 1960 Ising model
paper, in which he also started the investigation of the neighbourhood of this limit.
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Let 0 < γ < 1. The interaction potential between particles located at x ∈ Rd and
y ∈ Rd is given by

φγ(|x− y|) = q(|x− y|) − γdς(γ|x− y|) ,
where q(|x|) is a fixed short-range repulsive potential which diverges at the origin
more rapidly than |x|−d′ , d′ > d. If the interaction potential is q only (reference
system), then the free energy (at given temperature and in the thermodynamic

limit) is f̃(ρ), whereas the free energy (in the thermodynamic limit) for the full
interaction potential φγ is denoted by fγ(ρ). By general results fγ(ρ) is convex.
Therefore, as one takes the van der Waals limit γ → 0, the limiting free energy
remains convex. However, this limiting convex free energy is the convex envelope of
the non-convex free energy

−1

2
α ρ2 + f̃(ρ) .

Theorem 1.1. Under the above hypothesis, in the van der Waals limit γ → 0,

lim
γ→0

fγ(ρ) = CE
[
− 1

2
α ρ2 + f̃(ρ)

]
,

where CE[g] means the convex envelope of the function g.

1.4. Droplet models versus mean field models. Since the problem of the na-
ture of the singularity at a first order phase transition is difficult and subtle, it was
discussed in the 50’s and 60’s by making drastic assumptions. Two different ap-
proaches were considered, one based on mean field type assumptions, and the other
on the droplet model. Both could not give an answer to the question, but allowed
to formulate at least precise conjectures.

Temperley, [T], and Katsura, [Ka1] and [Ka2], considered the Bragg-Williams
approximation of lattice gases, in which the spatial positions of the particles do not
play any role. They observed a kink in the graph of the pressure at some activity
zY L, but showed that the virial expansion had a singularity at z∗ strictly larger than
zY L, which implies that Mayer’s conjecture is false and that the pressure has an
analytic continuation beyond zY L, as in the van der Waals-Maxwell Theory. Katsura
conjectured that this is also true for simple models with finite range interaction, like
the Ising model.

A completely different conclusion follows from an analysis of the droplet model
[A], [F] and [La1]27. This model, as opposed to the mean field approximation,
predicts that the finiteness of the range of interaction plays a crucial role in the
analytic properties of the thermodynamic potentials. Namely, when the range of
interaction is finite, droplets of any size are stable at the condensation point, and
although the probability of occurrence of large droplets is very small, it is their

stability which yields a contribution of the order k!
d

d−1 to the k-th derivative of
the pressure, and which prevents an analytic continuation. At the transition point
z = zσ all derivatives with respect to z (for real z) remain finite; one can write a
Taylor series for the pressure p, but this Taylor series has a convergence radius equal
to 0, so that no analytical continuation of p across zσ is possible.

27The conclusion that the condensation point should be an essential singularity of the activity
series was advanced at the I.U.P.A.P. Conference on Phase Transitions at Brown University in
June 1962 by Fisher. See footnote 17 in [F].
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The question of the possibility of an analytic continuation was analyzed after-
wards by several people. Using different techniques (exact computation, spectral
properties of transfer matrix, numerical analysis, series expansion methods) they
obtained different answers and no definitive conclusions. The only definitive result
was obtained in 1978 by Kunz and Souillard [KuSo], who proved that the generating
function of the cluster-size distribution in percolation is analytic at z = 0 in absence
of percolation, and has, in the percolation regime, a singularity at z = 0, which is of
the same kind as the one of the pressure of the droplet model. The importance of
this paper is that it is the first mathematical result on this difficult question, which
is free from any assumptions about the behaviour of model. However, the problem
solved by Kunz and Souillard is mathematically closer to the droplet model than to
the Ising model.

The breakthrough came with the profound work of Isakov [I1] in 1984.

Theorem 1.2 (Isakov). In dimension d ≥ 2, at low enough temperature, the pres-
sure28 of the Ising model in a magnetic field h, p = p(h), is infinitely differentiable
at h = 0±, and for large k

p(k)(0±) ∼ Ckk!
d

d−1 .

The result implies that one can define two Taylor series of the pressure at h = 0
by evaluating the derivatives at h = 0+, respectively h = 0−. Both series have zero
convergence radius, so that there is no analytic continuation of p from {h < 0} to
{h > 0} across h = 0, or vice versa. In a second paper [I2], Isakov tried to extend this
result to generic two phase lattice models. He had, however, to introduce hypotheses
that are not easy to verify in concrete models. The analysis of Isakov confirms the
prediction of the droplet model. However, as already mentioned in the footnote
24 the mechanism in lattice models leading to phase coexistence and non-analytic
continuation of the pressure is much more subtle than in the droplet model.

28The terminology here is not the usual terminology, when the model is considered as a spin
model. The term “pressure” is used in general for the lattice gas interpretation of the model. It
is the grand canonical pressure. In that case the chemical potential µ is related to the magnetic
field by

µ = 2h− 4J (J , coupling constant of the model) .
Then the transition takes place at µ∗ = −4J . In the rest of the lectures I adopt the spin formulation
of the model, but I use the term “pressure” instead of “free energy”.
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2. Absence of analytic continuation for lattice models with

short-range interaction

At a first order phase transition, the pressure does not have an analytic continu-
ation in the thermodynamic variable, which is conjugate to an order parameter for
the transition, [FrPf1]. I give a precise statement of this result, theorem 2.1, in the
framework of the Pirogov-Sinai theory, at low temperatures, for lattice models with
finite range interaction and two periodic ground-states, under the only condition
that the Peierls condition is verified.

2.1. Main result, theorem 2.1. The notations are close to those of [FrPf1]. As
it is usually the case, the models are defined for the cubic lattice

Z
d := {x = (x(1), . . . , x(d)) : x(i) ∈ Z} with d ≥ 2 ,

which is equipped with a norm,

|x| :=
d

max
i=1

|x(i)| .

There is a natural notion of “translation by a” for all a ∈ Zd. For finite R > 0,

BR(x) := {y ∈ Z
d : |x− y| ≤ R} .

At each site of the lattice there is a “spin” taking its values in S, the state
space of the model, which is a finite subset. A configuration of the system is a
function ϕ : Zd → S. The restriction of ϕ to A ⊂ Zd is denoted by ϕ(A), and two
configurations ϕ, ψ are almost surely equal, ϕ = ψ (a.s.), if {x : ϕ(x) 
= ψ(x)} ⊂ Zd

is finite.

The interaction between spins are defined by a potential29, which is a family {ΦA}
of local maps indexed by finite subsets of Z

d,

ϕ �→ ΦA(ϕ) ∈ R ΦA(ϕ) = ΦA(ψ), whenever ϕ(A) = ψ(A).

The interaction is of finite range, if there exists R <∞ such that

ΦA ≡ 0 if 
 ∃ a ∈ Z
d such that A ⊂ BR(a).

It is convenient to introduce

Ux :=
∑
A�x

1

|A|ΦA ,

and to write a hamiltonian H as the formal sum H =
∑

x∈Zd Ux. The partition
function30 of the spins indexed by x ∈ Λ ⊂ Zd, at inverse temperature β, is

Z(Λ; β) :=
∑
ϕ(Λ)

exp
(
− β

∑
A⊂Λ

ΦA(ϕ(Λ))
)
,

and the pressure, in the thermodynamic limit, is

p(β) := lim
Λ↑Zd

1

β|Λ| lnZ(Λ; β) (van Hove limit).

29See [Ru] for further details.
30One can add boundary terms. In the thermodynamic limit, taken in the sense of van Hove

(see [Ru]), these boundary terms do not affect the pressure.
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Let H0 be a hamiltonian with interaction of finite range R,

H0 =
∑
x∈Zd

U0,x .

I assume that H0 has two (periodic) ground-states, ψ1 and ψ2. A configuration ψ1

is a ground-state if

H0(ϕ|ψ1) :=
∑
x∈Zd

(
U0,x(ϕ) − U0,x(ψ1)

)
≥ 0 for any ϕ = ψ1 (a.s.) .

H0(ϕ|ψ1) is well-defined since the sum has only finitely many non-zero terms. Given
ϕ, a lattice site x is ψj-correct if

ϕ(BR(x)) = ψj(BR(x)) .

It is correct if it is ψ1-correct or ψ2-correct, otherwise it is incorrect. The boundary
of a configuration ϕ is by definition the subset of Zd

∂ϕ :=
⋃

x∈Z
d: x

incorrect for ϕ

BR(x) .

Main assumption. The two ground-states ψm of H0, m = 1, 2, are periodic. They
verify the Peierls condition: there exists a constant ρ > 0 such that

H0(ϕ|ψm) ≥ ρ|∂ϕ| ∀ ϕ such that ϕ = ψm (a.s.) .

|C| denotes the cardinality of a finite subset C.

The Peierls condition is a very natural assumption. It means that in order to
create a boundary one needs an energy at least proportional to the size of the
boundary. Boundaries are energy barriers.

Let H1 be another hamiltonian with interaction of finite range R,

H1(ϕ) =
∑
x∈Zd

U1,x .

The hamiltonian of the model, Hµ, is the sum of H0 and µH1,

Hµ := H0 + µH1 , µ ∈ R .

Assumption. H1 splits the degeneracy of the ground-states of H0: if µ < 0, Hµ has
a unique ground-state, which is ψ2; if µ > 0, Hµ has a unique ground-state, which
is ψ1.

To simplify slightly the exposition31, I further assume that the energy (per spin)
of the ground-states for the hamiltonian H0 is given by

lim
Λ↑Zd

1

|Λ|
∑
x∈Λ

U0,x(ψm) = U0,y(ψm) = 0 , ∀ y , m = 1, 2 .

Similarly, the energy (per spin) of ψm for the hamiltonian H1 is

h(ψm) := lim
Λ↑Zd

1

|Λ|
∑
x∈Λ

U1,x(ψm) = U1,y(ψm) , ∀ y , m = 1, 2 .

31See the computation in (3.4). This is not a genuine restriction, since one can always, by an
appropriate change of the lattice and of the state space S, reduce the general case to the case
considered in these lectures.
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The assumption, about the splitting of the ground-states of H0 by H1, implies that

∆ := h(ψ2) − h(ψ1) > 0 .

The quantity U1,x is interpreted as an order parameter. The real quantity µ is the
conjugate variable to this order parameter. The pressure of the model, at inverse
temperature β, is written by p(µ, β).

Theorem 2.1. Under the above setting, there exist an open interval U0 � 0, β∗ ∈ R+

and, for all β ≥ β∗ there exists a µ∗(β) ∈ U0 with the following properties.

(1) There is a first-order phase transition at µ∗(β).
(2) The pressure p(µ, β) is real-analytic in µ in {µ ∈ U0 : µ < µ∗(β)}; it has a

C∞ continuation in {µ ∈ U0 : µ ≤ µ∗(β)}.
(3) The pressure p(µ, β) is real-analytic in µ in {µ ∈ U0 : µ > µ∗(β)}; it has a

C∞ continuation in {µ ∈ U0 : µ ≥ µ∗(β)}.
(4) There is no analytic continuation of p along a real path from µ < µ∗(β) to

µ > µ∗(β) crossing µ∗(β), or vice-versa.

2.2. Comments on theorem 2.1. These results generalize the works of Isakov [I1],
for the Ising model, and [I2], where a similar theorem is proven under additional
assumptions, which are not easy to verify in a concrete model. Theorem 2.1, which
relies only on the Peierls condition, is therefore a genuine improvement of [I2]. The
first statement is a particular case of the theory of Pirogov and Sinai, see [PiSi] and
[Si]. I give a proof of this result in section 3, as far as it concerns the pressure, since
one needs detailed information about the phase diagram in the complex plane of the
parameter µ.

The obstruction to an analytic continuation of the pressure in the variable µ is
due to the stability of the contours of both phases in a neighborhood of µ∗. The
proof follows in essence that of Isakov in [I1]. It is given in section 4.

The results presented here are true for a much larger class of systems. For example,
for the Potts model with high number q of components at the first order phase
transition point βc, where the q ordered phases coexist with the disordered phase.
Here β, the inverse temperature, plays the role of the field µ, and the statement
is that the pressure, which is analytic for β > βc, or for β < βc, does not have an
analytic continuation across βc. They are also true when the model has more than
two ground-states. For example, for the Blume-Capel model, whose hamiltonian is∑

x,y

(sx − sy)
2 − h

∑
x

sx − λ
∑

x

s2
x with sx ∈ {−1, 0, 1} ,

the pressure is an analytic function of h and λ in the single phase regions. At low
temperature, at the triple point occurring at h = 0 and λ = λ∗(β) there is no
analytic continuation of the pressure in λ, along the path h = 0, or in the variable
h, along the path λ = λ∗ [FrPf4].
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3. The theory of phase transitions of Pirogov and Sinai

Since theorem 2.1 is proved in the framework of the theory of phase transitions
of Pirogov and Sinai, the first step is to write the model as a contour model. The
reader is invited to read the footnote 24, in which the basic mechanism of phase
condensation for lattice models is exposed without any technicalities. The idea
of a contour model is to obtain a representation of the partition function Θq(Λ)
(definition 3.4) in terms of geometric objects, the contours, which interact only
through a hard-core condition. I present the Pirogov-Sinai theory as a perturbative
theory around β = ∞. At β = ∞ the phase transition takes place at µ = 0, where
there is coexistence of the two ground-states. The approach, which I expose below,
consists in constructing the phase transition point perturbatively by taking into
account in a systematic manner the different perturbations, “excitations”, of the
model, and by focusing the attention to the phase coexistence point, starting from
the point µ = 0 where there is coexistence of the two ground-states. In an interval
In of µ = 0, when β is large, but finite, one can defined constrained pressures, pn

1

and pn
2 , for both phases, by taking into account only finitely many different kinds of

contours. The constrained pressure pn
q is analytic in In. One defines the transition

point in the interval In by finding the value µ∗
n+1 of µ such that

pn
1 (µ∗

n+1, β) = pn
2 (µ∗

n+1, β) .

In+1 ⊂ In, and as n increases, the length of the interval tends to zero. This deter-
mines uniquely a point µ∗ where all contours are stable. This is the phase coexistence
point.

This approach is particularly well adapted since it can be done also for complex
values of the parameter µ, which is an essential point for examining the nature of
the singularity of the free energy at µ∗. This is the original method32 of Isakov in
[I2], who, for the first time constructed phase diagrams in the complex µ-plane. It
differs from that of [PiSi], which is based on the Banach fixed-point theorem.

3.1. Lattice models as contour models. I follow the text of Sinai [Si]. Further
details may be found in that reference.

Definition 3.1. Let M denote a finite connected 33 subset of Zd, and ϕ a configu-
ration. A couple Γ = (M,ϕ(M)) is called a contour of the configuration ϕ if M is a
component of the boundary ∂ϕ. A couple Γ = (M,ϕ(M)) is a contour if there exists
a configuration such that Γ is a contour of that configuration.

32In [Z] another approach is developed, which has similar features, and which has been used by
many people. Zahradńık defines, by brute force, i.e. by suppressing unstable contours, truncated
pressures for both phases on the whole phase diagram. So, for each value of µ, one has two different
truncated pressures, and the equilibrium pressure of the model is equal to the maximal (with my
definition of pressure) truncated pressure, so that the transition point is given by the value of µ
for which the two truncated pressures are equal. Technically this approach is more involved, if one
wants to construct smooth truncated pressures. (In the original paper the truncated pressures are
not even continuous.) This approach works well for complex values of µ, see [BorIm]. Since the
truncated pressures cannot be analytic in general, they are inappropriate in the present context.

33A path on Zd is a set of points {x0, x1, . . . , xn} with the property that |xi − xi−1| = 1 for all
i = 1, . . . , n.
Connected set means path-connected set, and a component B of a subset A ⊂ Zd is a maximally
path-connected subset of A.
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The subset M of Γ = (M,ϕ(M)) is the support of the contour, and is denoted by
supp Γ, or simply by Γ when no confusion arises. In particular

|Γ| ≡ |supp Γ| .
Let Aα be the components of Zd\M . For each component Aα there exists a unique
label q(α) ∈ {1, 2} such that

ϕΓ(x) :=

{
ψq(α)(x) if x ∈ Aα

ϕ(x) if x ∈M

is the unique configuration with the property that ∂ϕΓ = M and ϕΓ(M) = ϕ(M).
There is only one infinite component Aα, called exterior of Γ, which is denoted by
Ext Γ. All other components are the internal components; Intm Γ is the union of all
internal components of Γ with label m; the interior of Γ is Int Γ :=

⋃
m=1,2 Intm Γ.

In order to indicate the label of Ext Γ, a superscript is added to Γ. Thus, Γq means
that on Ext Γ the configuration ϕΓ is equal to the ground-state configuration ψq. Γq

is a contour with boundary condition ψq. By definition, the volume of a contour Γq,
with boundary condition ψq, is the total volume of the internal components of Γq

with label m, m 
= q:
V (Γq) := |Intm Γq| (m 
= q) .

Definition 3.2. Let Λ ⊂ Zd. A contour Γ is inside Λ, which is written Γ ⊂ Λ, if
supp Γ ⊂ Λ, Int Γ ⊂ Λ and 34 d(supp Γ,Λc) > 1. A contour Γ of a configuration
ϕ is an external contour of ϕ if supp Γ ⊂ Ext Γ′ for any other contour Γ′ of ϕ. A
compatible family of contours in Λ is a family of contours with the same boundary
condition, say {Γq

1, . . . ,Γ
q
n}, with Γq

i ⊂ Λ and d(supp Γq
i , supp Γq

j) > 1 for all i 
= j.

The basic statistical mechanical quantities of the theory are

(1) the partition function Θ(Γq) of the contour Γq,

(2) the partition function Θq(Λ) of the system in Λ, with boundary condition ψq,

(3) the weight ω(Γq) of the contour Γq.

Definition 3.3. Let Ω(Γq) be the set of configurations ϕ = ψq (a.s.) such that Γq

is the only external contour of ϕ. The partition function of Γq is

Θ(Γq) :=
∑

ϕ∈Ω(Γq)

exp
[
− βH(ϕ|ψq)

]
.

Definition 3.4. Let Ωq(Λ) be the set of configurations ϕ = ψq (a.s.) such that
Γ ⊂ Λ whenever Γ is a contour of ϕ. The partition function of the system in Λ, with
boundary condition ψq, is

Θq(Λ) :=
∑

ϕ∈Ωq(Λ)

exp
[
− βH(ϕ|ψq)

]
.

Definition 3.5. Let Γq be a contour with boundary condition ψq. The weight ω(Γq)
of Γq is

ω(Γq) := exp
[
− βH(ϕΓq |ψq)

]Θm(Intm Γq)

Θq(Intm Γq)
(m 
= q) .

The (bare) surface energy of a contour Γq is

‖Γq‖ := H0(ϕΓq |ψq) .

34If A ⊂ Zd, B ⊂ Zd, then d(A,B) := minx∈A miny∈B |x− y|.
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For each ground-state ψq one defines a ψq-dependent pressure (limit in the sense
of van Hove)

gq := lim
Λ↑Zd

1

β|Λ| ln Θq(Λ) .

It is easy to verify that the pressure of the model, in the thermodynamic limit,
verifies

gq = p+ µ h(ψq) .

It does not depend on ψq, contrary to gq. The partition function Θq(Λ) is equal to

Θq(Λ) =
∑ n∏

i=1

Θ(Γq
i ) , (3.1)

where the sum is over the set of all compatible families {Γq
1, . . . ,Γ

q
n} of external

contours in Λ. On the other hand

Θ(Γq) = exp
[
− βH(ϕΓq |ψq)

] 2∏
m=1

Θm(Intm Γq) . (3.2)

Replacing Θ(Γq
i ) in (3.1) by its expression given by (3.2), taking into account def-

inition 3.5, and iterating this procedure, one obtains easily the final form of the
partition function Θq(Λ), as the partition function of a contour model, i.e.

Θq(Λ) = 1 +
∑ n∏

i=1

ω(Γq
i ) , (3.3)

the sum being over all compatible families of contours {Γq
1, . . . ,Γ

q
n} with boundary

condition ψq.

Let Γq be a contour and m 
= q.

H(ϕΓq |ψq) =
∑
x∈Zd

(
U0,x(ϕΓq) + µU1,x(ϕΓq) − U0,x(ψq) − µU1,x(ψq)

)
= H0(ϕΓq |ψq)

+
∑

x∈supp Γq

µ
(
U1,x(ϕΓq) − U1,x(ψq)

)
+

∑
x∈Int Γq

µ
(
U1,x(ϕΓq) − U1,x(ψq)

)
= ‖Γq‖ + µ

∑
x∈supp Γq

(
U1,x(ϕΓq) − U1,x(ψq)

)
+ µ(h(ψm) − h(ψq))V (Γq)

≡ ‖Γq‖ + µa(ϕΓq) + µ(h(ψm) − h(ψq))V (Γq) . (3.4)

In (3.4)

a(ϕΓq) :=
∑

x∈supp Γq

U1,x(ϕΓq) − U1,x(ψq) .

Since the interaction is bounded, there exists a constant C1 so that

|a(ϕΓq)| ≤ C1|Γq| . (3.5)

The surface energy ‖Γq‖ is always strictly positive since the Peierls condition holds,
and there exists a constant C2, independent of q, such that

ρ|Γq| ≤ ‖Γq‖ ≤ C2|Γq| . (3.6)

Definition 3.6. The weight ω(Γq) is τ -stable for Γq if there exists τ > 0 such that

|ω(Γq)| ≤ exp(−τ |Γq|) .
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The dominant terms of the weight ω(Γq), in the neighbourhood of µ = 0, are ‖Γq‖,
the bare surface energy of Γq, and µ(h(ψm)− h(ψq))V (Γq), which is a volume term.
Stability of the weight is true when surface terms dominate volume terms (see (3.4)).
Therefore, in the proof of the stability of weights, the isoperimetric inequality

χqV (Γq)
d−1

d ≤ ‖Γq‖
plays a central role. There is a complication, due to the fact that there is no
homogeneity property for this inequality, and it is very difficult to determine the
value of χq. The way how this constant is defined is an important point. The precise
formulation of the isoperimetric inequality, which is convenient in the context of
theorem 2.1 is defined later in (4.1). This is a key point of the analysis.

The construction of the phase diagram is done by considering constrained partition
functions and constrained pressures involving only contours such that V (Γq) ≤ n,
n ∈ N. The phase diagram is constructed for these constrained pressures, and then
one takes the limit n → ∞. For given n, n = 0, 1, . . . , the weight ωn(Γq) is defined
by

ωn(Γq) :=

{
ω(Γq) if V (Γq) ≤ n,

0 otherwise.
(3.7)

Let l(n) be defined on N by

l(n) := C−1
0

⌈
2dn

d−1
d

⌉
n ≥ 1 .

This function has the property35:

V (Γq) ≥ n =⇒ |Γq| ≥ l(n) .

So, if the volume V (Γq) of a contour is large, then its surface energy cannot be
too small (see (3.6)). For q = 1, 2, one defines constrained partition functions Θn

q

by equation (3.3), using ωn(Γq) instead of ω(Γq). It is essential to replace the real
parameter µ by a complex parameter z; provided that Θn

q (Λ)(z) 
= 0 for all Λ,

gn
q (z) := lim

Λ↑Zd

1

β|Λ| ln Θn
q (Λ)(z) and pn

q (z) := gn
q (z) − z h(ψq) . (3.8)

pn
q is the constrained pressure of order n and boundary condition ψq. Contrary to p, it

depends on the boundary condition.

Lemma 3.1 gives basic, but essential, estimates for the rest of the paper. The only
hypothesis for this lemma is that the weights of the contours are τ -stable.

Lemma 3.1. Let ω(Γq) be any complex weights, depending on a parameter t. The
weight ωn(Γq) is defined by (3.7).
(A) Suppose that the weights ωn(Γq) are τ -stable for all Γq, as well as the weights

35Given Λ ⊂ Zd, one defines ∂|Λ| as the (d− 1)-volume of the boundary of the set in Rd which
is the union of unit cubes centered at the points of Λ. One has

2d|Λ|
d−1

d ≤ ∂|Λ| (isoperimetric inequality) .

The constant C0 is such that, if Λ = Intm Γq and ∂V (Γq) := ∂|Λ|, then

∂V (Γq) ≤ C0|Γq| .
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d
dt
ωn(Γq) and d2

dt2
ωn(Γq). Then there exists K < ∞ and τ ∗ < ∞ independent of n,

so that for all τ ≥ τ ∗,

β
∣∣ dk

dtk
gn

q

∣∣ ≤ Ke−τ k = 0, 1, 2 .

For all finite subsets Λ ⊂ Zd,∣∣ dk

dtk
lnΘn

q (Λ) − β
dk

dtk
gn

q |Λ|
∣∣ ≤ Ke−τ ∂|Λ| k = 0, 1, 2 .

(B) If ωn(Γq) = 0 for all Γq such that |Γq| ≤ m, then

β|gn
q | ≤

(
Ke−τ

)m
.

For n ≥ m and m ≥ 1

β|gn
q − gm−1

q | ≤
(
Ke−τ

)l(m)
.

(C) If the weights ωn(Γq) are τ -stable for all Γq and all n ≥ 1, then all these

estimates hold for gq and Θq instead of gn
q and Θn

q . Moreover, dk

dtk
gn

q converge to
dk

dtk
gq for k = 0, 1, 2.

The proof of lemma 3.1 is based on the identity

lnΘn
q (Λ) =

∑
m≥1

1

m!

∑
Γq

1⊂Λ

· · ·
∑

Γq
m⊂Λ

ϕT
m(Γq

1, . . . ,Γ
q
m)

m∏
i=1

ωn(Γq
i ) , (3.9)

which is valid when the weights ωn(Γq) of all contours with boundary condition ψq

are τ -stable, and if τ is large enough. In (3.9) the convergence is absolute, and
ϕT

m(Γq
1, . . . ,Γ

q
m) is a purely combinatorial factor. This identity is studied in detail in

[Pf]. Lemma 3.1 implies that

dk

dtk
ln Θn

q (Λ) = β
dk

dtk
gn

q |Λ| + surface term k = 0, 1, 2 ,

with a uniform control of dk

dtk
gn

q and surface terms. Both terms are O(e−τ ). See
[FrPf1] for a proof.

3.2. Construction of the phase diagram in the complex z-plane. The Pirogov-
Sinai theory rests on few basic concepts: (a) the notion of contour, together with
the notion of weight of contour, (b) the notion of stability of contour, (c) the Peierls
condition. Technically, the basic formula is (3.4), which, together with the Peierls
condition and lemma 3.1, allow to establish stability of a contour. In this subsection
I carry out the program set forth at the beginning of section 3.

To construct the phase diagram for complex values of the parameter µ, one con-
structs iteratively the phase diagram for the constrained pressures pn

q (see (3.8)).
Set z := µ + iν. The method consists in finding a sequence of intervals for each
ν ∈ R,

Un(ν; β) :=
(
µ∗

n(ν; β) − b1n, µ
∗
n(ν; β) + b2n

)
,

with the properties (1):(
µ∗

n(ν; β) − b1n, µ
∗
n(ν; β) + b2n

)
⊂
(
µ∗

n−1(ν; β) − b1n−1, µ
∗
n−1(ν; β) + b2n−1

)
, (3.10)
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and (2): limn b
q
n = 0, q = 1, 2. On the intervals Un−1(ν; β) the constrained pressures

pn−1
q of order n− 1, q = 1, 2, are well-defined and analytic on

Un−1 := {z ∈ C : Rez ∈ Un−1(Imz; β)} .
The point µ∗

n(ν; β), n ≥ 1, is the (unique) solution of the equation

Re
(
pn−1

2 (µ∗
n(ν; β) + iν) − pn−1

1 (µ∗
n(ν; β) + iν)

)
= 0 .

µ∗
n(0; β) is by definition the point of phase coexistence for the constrained pressures

of order n − 1, when z = µ ∈ R. The point of phase coexistence of the model is
given by µ∗(0; β) = limn µ

∗
n(0; β).

Proposition 3.1. Let 0 < ε < ρ, and set

U0 := (−C−1
1 ε, C−1

1 ε) and U0 := {z ∈ C : Rez ∈ U0} .
Then there exist (a) δ = δ(β) such that limβ→∞ δ(β) = 0, and (b) β0 ∈ R

+ such that
if β ≥ β0, then

τ(β) := β(ρ− ε) − 3C0δ > O ,

and the following holds.

(1) There exists a continuous real-valued function on R, ν �→ µ∗(ν; β) ∈ U0, so
that µ∗(ν; β) + iν ∈ U0.

(2) If µ + iν ∈ U0 and µ ≤ µ∗(ν; β), then the weight ω(Γ2) is τ(β)-stable for
all contours Γ2 with boundary condition ψ2, and analytic in z = µ + iν if
µ < µ∗(ν; β).

(3) If µ + iν ∈ U0 and µ ≥ µ∗(ν; β), then the weight ω(Γ1) is τ(β)-stable for
all contours Γ1 with boundary condition ψ1, and analytic in z = µ + iν if
µ > µ∗(ν; β).

Corollary 3.1. At high β, the pressure of the model can be constructed as a real-
analytic function p(µ, β) = g2(µ, β) − µh(ψ2) on {µ : µ < µ∗(0; β)} ∩ U0. This
function has a complex analytic extension in {z = µ + iν : µ < µ∗(ν; β)} ∩ U0,
which is given by g2(z, β) − zh(ψ2). Similarly, the pressure can be constructed as a
real-analytic function p(µ, β) = g1(µ, β) − µh(ψ1) on {µ : µ > µ∗(0; β)} ∩ U0. This
function has a complex analytic extension in {z = µ+ iν : µ > µ∗(ν; β)}∩U0, which
is given by g1(z, β) − zh(ψ1).

I outline the structure of the proof of proposition 3.1, and prove only the weaker
result, that there exists a continuous real-valued function on R, ν �→ µ∗(ν; β) ∈ U0,
so that µ∗(ν; β) + iν ∈ U0, and that at µ∗(ν; β) + iν all contours are τ�(β)-stable,
with

τ�(β) := β
(
ρ(1 − θ�) − ε

)
for some 0 < θ� < 1. (3.11)

This gives a constructive definition of the point of phase coexistence µ∗(β). The
existence of two different phases follows from a standard Peierls argument36, since

36The Peierls argument is at the origin of many works in statistical mechanics, and the notion
of contour models has its origin in [Pe], which is worth while to read. It is interesting to notice
that this paper became well-known only in the late sixties. Peierls himself wrote in [Pe] in 1936:
The Ising model is therefore now only of mathematical interest. Since, however, the problem of
Ising’s model in more than one dimension has led to a good deal of controversy and in particular
since the opinion has often been expressed that the solution of the three-dimensional problem could
be reduced to that of the linear model and would lead to similar results, it may be worth while to
give its solution. What Peierls did, was to show that the law of large numbers does not hold at
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all contours are τ�(β)-stable at µ∗(β). This proves the first statement of theorem
2.1.

Before giving the proof, I put into evidence a key step concerning the stability of
the weights of contours. I introduce an auxiliary parameter 0 < θ′ < 1, so that

ρ(1 − θ′) > ε .

The parameter θ′ enters into the size of the intervals Un, see (3.17); the size of Un

is proportional to θ′. This parameter controls the volume term of the weight of a
contour by the surface energy ‖Γq‖ (see (3.15) and (3.16)). By taking ε smaller, one
can choose θ′ larger. θ� is chosen so that θ� > θ′ and ρ(1 − θ�) > ε. Set

δ := Ke−τ�(β) (K the constant in lemma 3.1). (3.12)

Let β0 be large enough, and assume that β ≥ β0, and that for q = 1, 2, the weights
ωn−1(Γ

q) are τ�(β)-stable and∣∣ d
dz
ωn−1(Γ

q)
∣∣ ≤ e−τ�(β)|Γq | .

From (3.8) and lemma 3.1 one obtains∣∣ d
dz

(
pn−1

2 − pn−1
1

)
+ ∆

∣∣ =
∣∣ d
dz

(
gn−1
2 − gn−1

1

)∣∣ ≤ 2δ , (3.13)

and (m 
= q) ∣∣ ln Θn−1
q (Intm Γq) − βgn−1

q V (Γq)|
∣∣ ≤ δ C0|Γq|∣∣ ln Θn−1

m (Intm Γq) − βgn−1
m V (Γq)|

∣∣ ≤ δ C0|Γq| .
Let Γq be a contour with V (Γq) = n. Then (always m 
= q)

|ω(Γq)| = exp
[
− βReH(ϕΓq |ψq)

] ∣∣∣Θm(Intm Γq)

Θq(Intm Γq)

∣∣∣ (3.14)

≤ exp
[
− β‖Γq‖ +

(
βε+ 2C0δ

)
|Γq| + βRe

(
pn−1

m − pn−1
q

)
V (Γq)

]
,

because all contours inside Intm Γq have a volume smaller than n−1, and (see (3.5))

|Rez a(ϕΓq)| ≤ ε ∀ z ∈ U0 .

To prove the stability of ω(Γq) one must control the volume term in the right-hand
side of inequality (3.14). If

Re
(
pn−1

1 − pn−1
2

)
V (Γ2) ≤ θ′‖Γ2‖ (3.15)

and
Re

(
pn−1

2 − pn−1
1

)
V (Γ1) ≤ θ′‖Γ1‖ , (3.16)

then ω(Γ2) and ω(Γ1) are τ�(β)-stable. Indeed, these inequalities imply

|ω(Γq)| ≤ exp
[
− β(1 − θ′)‖Γq‖ +

(
βε+ 2C0δ

)
|Γq|

]
≤ exp

[
− β

(
(1 − θ�)ρ− ε

)
|Γq|

]
.

low temperature. For a finite Ising model with free boundary condition he proved that at least
three quarters of the spins have the same value if the temperature is low enough. Free boundary
condition, on the other hand, implies that the mean magnetization is zero (by symmetry). The
failure of the law of large numbers is the consequence of the coexistence of two distinct phases,
with two distinct non-zero values of the magnetization. The Peierls argument is also very nicely
exposed in [Gri].
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Verification of the inequalities (3.15) and (3.16) is possible because (3.13) provides
a sharp estimate of the derivative of pn−1

2 − pn−1
1 . Details are given below.

Proof. Let θ′ be chosen as above, and b0 := εC−1
1 . p0

q(µ + iν) is defined on the
interval U0(ν; β) := (−b0, b0), and set µ∗

0(ν; β) := 0. The two decreasing sequences
{bqn}, q = 1, 2 and n ≥ 1, are chosen as

b1n ≡ b2n :=
χθ′

(∆ + 2δ)n
1
d

, n ≥ 1 . (3.17)

The constant χ is the best constant such that

V (Γq)
d−1

d ≤ χ−1‖Γq‖ ∀ Γq , q = 1, 2 . (3.18)

It is immediate to verify, when β is large enough, that

bqn − bqn+1 >
2δl(n)

β(∆ − 2δ)
, ∀n ≥ 1 . (3.19)

On U0 all contours Γ with volume zero are β(ρ−ε)-stable, and, if β0 is large enough,∣∣∣ d
dz
ω(Γ)

∣∣∣ ≤ βC1|Γ|e−β(ρ−ε)|Γ| ≤ βC1e
−[β(ρ−ε)−1]|Γ| ≤ e−τ�(β)|Γ| .

The proof of proposition 3.1 consists of proving iteratively the following four state-
ments.

A. There exists a unique continuous solution ν �→ µ∗
n(ν; β) of the equation

Re
(
pn−1

2 (µ∗
n(ν; β) + iν) − pn−1

1 (µ∗
n(ν; β) + iν)

)
= 0 ,

so that (3.10) holds.
B. For any contour Γq ωn(Γq) is well-defined and analytic on Un, and ωn(Γq) is

τ�(β)-stable. Moreover, Θn
q (Λ) 
= 0 for any finite Λ, and pn

q (z; β) is analytic
on Un.

C. On Un,
∣∣ d
dz
ωn(Γq)

∣∣ ≤ e−τ�(β)|Γq |.

D. If z = µ+ iν ∈ U0 and µ ≤ µ∗
n(ν; β) − b1n, then ω(Γ2) is τ(β)-stable for any

Γ2 with boundary condition ψ2. If z = µ + iν ∈ U0 and µ ≥ µ∗
n(ν; β) + b2n,

then ω(Γ1) is τ(β)-stable for any Γ1 with boundary condition ψ1.

The main technical part is the proof of point D. The argument for proving D is due
to [Z] (see [FrPf1]). I prove only A, B and C.

Assume that the construction has been done for all k ≤ n− 1.

A. Proof of the existence of µ∗
n(ν; β) ∈ Un−1.

µ∗
n(ν; β) is solution of the equation

Re
(
pn−1

2 (µ∗
n(ν; β) + iν) − pn−1

1 (µ∗
n(ν; β) + iν)

)
= 0 .

The value of ν is fixed, and set

F k(µ) := pk
2(µ+ iν) − pk

1(µ+ iν) .

One proves that

µ �→ ReF n−1(µ)
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is strictly decreasing, and takes positive and negative values. If µ′ + iν ∈ Un−1, then

F n−1(µ′) = F n−1(µ′) − F n−2(µ∗
n−1) (3.20)

= F n−1(µ′) − F n−1(µ∗
n−1) + F n−1(µ∗

n−1) − F n−2(µ∗
n−1)

=

∫ µ′

µ∗
n−1

d

dµ
F n−1(µ) dµ+

(
gn−1
2 − gn−2

2

)
(µ∗

n−1 + iν)

−
(
gn−1
1 − gn−2

1

)
(µ∗

n−1 + iν) .

If V (Γ) = n− 1, then |Γ| ≥ l(n− 1). Therefore, by lemma 3.1,

|
(
gn−1

q − gn−2
q

)
(µ∗

n−1 + iν)| ≤ β−1δl(n−1) . (3.21)

If z′ = µ′ + iν ∈ Un−1, then (3.20), (3.13) and (3.21) imply

−∆(µ′ − µ∗
n−1) − 2δ|µ′ − µ∗

n−1| − 2β−1δl(n−1) ≤ ReF n−1(z′)

≤ −∆(µ′ − µ∗
n−1) + 2δ|µ′ − µ∗

n−1| + 2β−1δl(n−1) .

Since (3.19) holds,

bqn−1 > bqn−1 − bqn >
2δl(n−1)

β(∆ − 2δ)
,

so that ReF n−1(µ∗
n−1 − b1n−1) > 0 and ReF n−1(µ∗

n−1 + b2n−1) < 0. This proves the
existence of µ∗

n and its uniqueness, since µ �→ ReF n−1(µ) is strictly decreasing (see
(3.13)). Moreover, choosing µ′ = µ∗

n(ν; β) in (3.20), one gets

|µ∗
n(ν; β) − µ∗

n−1(ν; β)| ≤ 2δl(n−1)

β(∆ − 2δ)
.

Therefore Un ⊂ Un−1. The implicit function theorem implies that ν �→ µ∗
n(ν; β) is

continuous (even C∞).

B. Proof of the τ�-stability on Un of the weights ωn(Γq) of all contours Γq, q = 1, 2.
By the induction hypothesis the weights ωn(Γq) are analytic in Un−1. This implies
that pn

q is analytic on Un. The proof of the stability has been already outlined. Let

Γq be a contour with V (Γq) = n. One verifies (3.15), if µ ≤ µ∗
n + b2n, and (3.16), if

µ ≥ µ∗
n − b1n. The choice of {bqn} and the isoperimetric inequality (3.18) imply∣∣Re

(
pn−1

m − pn−1
q

)∣∣V (Γq)

‖Γq‖ =
∣∣∣Re

∫ µ

µ∗
n

d

dµ

(
pn−1

m − pn−1
q

)
dµ
∣∣∣V (Γq)

‖Γq‖

≤ |µ− µ∗
n|(∆ + 2δ)

V (Γq)

‖Γq‖
≤ bn(∆ + 2δ)V (Γq)

1
dχ−1

≤ θ′ .

C. Proof of the τ�-stability of d
dz
ωn(Γq) on Un.

Let V (Γq) = n; from (3.4)

d

dz
ωn(Γq) = ωn(Γq)

(
− βa(ϕΓq) − β

(
h(ψm) − h(ψq)

)
V (Γq)

+
d

dz

(
ln Θm(Intm Γq) − ln Θq(Intm Γq)

))
.
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There exists a constant37 C3 such that∣∣ d
dz
ωn(Γq)

∣∣ ≤ β|ωn(Γq)|
(
|Γq|(C1 + 2δC0) + V (Γq)(∆ + 2δ)

)
≤ βC3|ωn(Γq)||Γq| d

d−1

≤ e−τ�(β)|Γq | ,

provided that β0 is large enough (use (3.14) for controlling |ωn(Γq)|). �
It is not difficult to prove more regularity for the curve ν �→ µ∗(ν; β). But this is

not necessary for these lectures. If β is sufficiently large, then for all n ≥ 1

d

dν
µ∗

n(0; β) = 0 ,

and ∣∣ d2

dν2
µ∗

n(ν; β)
∣∣ ≤ 2δ

∆ − 2δ

(( 2δ

∆ − 2δ

)2

+
2δ

∆ − 2δ
+ 1

)
. (3.22)

The first formula is a consequence of the reality of the constrained pressures on the
real axis, which implies that ν �→ µ∗

n(ν; β) is an even function. Moreover,

|µ∗(ν; β) − µ∗
n(ν; β)| ≤ 2δl(n)

β(∆ − 2δ)
. (3.23)

The next proposition gives an estimate for the derivative of the weight of a contour.
It is a strengthening of point C above (see [FrPf1]).

Proposition 3.2. Under the conditions of Proposition 3.1, there exist β0 ∈ R+ and
a constant D so that the following holds for all β ≥ β0. Let

τ ′(β) := τ(β) −D .

(1) If µ+ iν ∈ U0 and µ ≤ µ∗(ν; β), then∣∣ d
dz
ω(Γ2)(z)

∣∣ ≤ βC3e
−τ ′(β)|Γ2| .

(2) If µ+ iν ∈ U0 and µ ≥ µ∗(ν; β), then∣∣ d
dz
ω(Γ1)(z)

∣∣ ≤ βC3e
−τ ′(β)|Γ1| .

37See (3.5), (3.18) and (3.6); for C0, see footnote 35.
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4. Proof of theorem 2.1

This section is devoted to the proof38 of theorem 2.1 by the method due to Isakov
[I1]. Whenever a specific boundary condition is needed, I choose the boundary ψ2.
The inverse temperature β is large, but fixed. There is a first order phase transition
at

µ∗ := µ∗(0, β) .

In the complex z-plane, there is a line of “transition points”39, which is given by

Rep2(z
∗) = Rep1(z

∗) .

Since z∗ ≡ µ∗(ν; β) + iν,

Reg1(z
∗) − µ∗(ν; β)h(ψ1) = Reg2(z

∗) − µ∗(ν; β)h(ψ2) .

With δ as in the proof of proposition 3.1, one has (see (3.23)), for any real ν,

|µ∗(ν; β)| ≤ 2δ

β∆
.

The first step, in subsection 4.1, is to obtain better complex neighbourhoods of µ∗,
where the contours are stable and analytic functions of z. These neighbourhoods are
of course contour-dependent; they depend only on the volume and the label of the
contours. The size of these neighbourhoods is related directly to the best constant of
variational problems of isoperimetric type. More specifically, for each n ∈ N, there
is a variational problem for each label q: find the best isoperimetric constant χq(n)
such that

χq(n)−1 := inf
{
C :

V (Γq)
d−1

d

‖Γq‖ ≤ C , ∀ Γq such that V (Γq) ≥ n
}
. (4.1)

In particular one has

V (Γq)
d−1

d ≤ χq

(
V (Γq)

)−1‖Γq‖ .
The constants χq(n) form a bounded increasing sequence, and

χq(∞) := lim
n
χq(n) .

These variational problems are not those considered by Isakov, and this difference is
important.

Although the statement of theorem 2.1 makes sense only in the thermodynamic
limit, most of its proof is done by considering finite-volume partition functions, in
order to exploit the analyticity of the weights of contours in the neighbourhood of the
transition point µ∗. Only at the very end of the proof one takes the thermodynamic
limit. This last step is easy. Isakov’s representation of the finite-volume partition
function is defined in the next paragraph, and it is used in subsection 4.2 to express
the kth-derivative of the pressure in a convenient form.

38I insist on the main points, omitting some details, which can be found in [FrPf1], in order
to put into evidence the structure of the proof of theorem 2.1. It is a direct proof: estimate all
derivatives, and show that the radius of convergence of the Taylor series at µ∗ is zero! However,
this is not simple, and the implementation of that program is long.

39This line is defined by the property that all contours are stable.
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The partition function Θq(Λ) is expressed as a finite product of objects, indexed
by the contours in Λ, so that

gq
Λ :=

1

β|Λ| ln Θq(Λ) = − 1

β|Λ|
∑
Γq⊂Λ

uΛ(Γq) , (4.2)

is a sum with finitely many terms. Let Λ = Λ(L) be the cubic box

Λ(L) := {x ∈ Z
d : |x| ≤ L} .

One introduces a linear order, denoted by ≤, among the finite set of all contours
Γq ⊂ Λ with boundary condition ψq. The linear order is such that V (Γ′q) ≤ V (Γq)
if Γ′q ≤ Γq. One chooses an enumeration of the contours, Γq

1,Γ
q
2, . . ., so that the

predecessor of Γq in that enumeration, denoted by i(Γq), verifies i(Γq) ≤ Γq (if Γq

is not the smallest contour). Then, one introduces restricted partition functions
ΘΓq(Λ),

ΘΓq(Λ) := 1 +
∑ n∏

i=1

ω(Γq
i
′
) , (4.3)

where the sum is over all families of compatible contours {Γq
1
′, . . . ,Γq

n
′} with the

property that Γq
j
′ ≤ Γq for all j. The partition function Θq(Λ) is written as

Θq(Λ) =
∏

Γq⊂Λ

ΘΓq(Λ)

Θi(Γq)(Λ)
.

By convention Θi(Γq)(Λ) := 1 when Γq is the smallest contour. Let

uΛ(Γq) := − ln
ΘΓq(Λ)

Θi(Γq)(Λ)
. (4.4)

uΛ(Γq) is the free energy cost for introducing the new contour Γq in the restricted
model, where all contours satisfy Γ′q ≤ i(Γq).

Subsection 4.3 is in some sense the core of the proof. The crucial observation
of Isakov is that one gets accurate estimates of (large) derivatives of uΛ(Γq) by
the stationary phase method, provided that V (Γq) is large: there exists k0 ∈ N,
and for each contour Γq an integer kq

+(Γq) ≥ k0 (see (4.24)), such that for each
k ∈ [k0, k

q
+(Γq)] the kth-derivative of uΛ(Γq), at µ∗, can be estimated uniformly in Λ

by the stationary phase method. The function kq
+(Γq) has the properties

kq
+(Γq

1) < kq
+(Γq

2) , if V (Γq
1) < V (Γq

2) and lim
V (Γq)→∞

kq
+(Γq) = ∞ .

Let k0 < k ∈ N be given. Using the function kq
+(Γq), one distinguishes

k-large contours, if k ≤ kq
+(Γq) and k-small contours, if k > kq

+(Γq).

The kth-derivative of gq
Λ at µ∗ is

[gq
Λ]

(k)
µ∗ = − 1

β|Λ|
∑
Γq⊂Λ

[uΛ(Γq)]
(k)
µ∗ .

The contribution of [uΛ(Γq)]
(k)
µ∗ to the kth-derivative of the pressure, when Γq is a large

contour40, is controlled uniformly in the box Λ. The contributions of |[uΛ(Γq)]
(k)
µ∗ |,

40In fact, one must make a finer distinction between contours in the general case. One distinguish
large and thin contours and large and fat contours. These finer details are treated in subsection 4.3.
Only the contributions of large and thin contours are important.
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for small contours, are estimated from above, in a straightforward manner, using
the Cauchy formula. Let

sq,k
Λ =

1

β|Λ|
∑
Γq⊂Λ

Γq k-small

uΛ(Γq) .

Then ∣∣[sq,k
Λ ]

(k)
µ∗
∣∣ =

∣∣∣ k!
2πi

∮
∂Dr

sq,k
Λ (z)

(z − µ∗)k+1
dz
∣∣∣ ≤ k!

rk
sup

z∈∂Dr

|sq,k
Λ (z)| ,

where the disc Dr of center µ∗ and radius r is taken as large as possible, according
to the results of subsection 4.1.

The next step is to show that the contribution of large contours to [gq
Λ]

(k)
µ∗ domi-

nates that of small contours. This delicate analysis, which works only at low tem-
perature, is presented in subsection 4.4. Two basic facts are used:

(1) the sign of [uΛ(Γq)]
(k)
µ∗ , for any large contour Γq, is the same (see (4.10));

(2) given ε > 0 there exists χq(ε) and n(ε), such that

(1 + ε)χq(ε) > χq(∞) and χq(∞) ≥ χq(n) ≥ χq(ε) if n ≥ n(ε) . (4.5)

By definition of the variational problems (4.1), there exists Γq
n, n ≥ n(ε), such that

lim
n→∞

‖Γq
n‖ = ∞ and V (Γq

n)
d−1

d ≥ ‖Γq
n‖

(1 + ε)χq(ε)
. (4.6)

Let

kn :=

⌊
d− 1

d
β‖Γq

n‖
⌋
.

One verifies that Γq
n is a kn-large (and thin) contour, and that

[uΛ(Γq
n))]

(kn)
µ∗ ∼ Bkn (kn!)

d
d−1 (for large enough Λ) .

Moreover, the contribution of [uΛ(Γq
n))]

(kn)
µ∗ to the kn

th-derivative of gq
Λ at µ∗ domi-

nates that of [sq,kn

Λ ]
(kn)
µ∗ . Hence, for some constant C,

[gq
Λ]

(kn)
µ∗ ∼ Ckn (kn!)

d
d−1 (for large enough Λ) .

Since this bound is uniform in Λ, and (see lemma 4.3 in [FrPf1])

lim
L→∞

[g2
Λ(L)]

(k)
µ∗ = lim

t↑µ∗
[g2]

(k)
t or lim

L→∞
[g1

Λ(L)]
(k)
µ∗ = lim

t↓µ∗
[g1]

(k)
t ,

the same result holds in the thermodynamic limit. This proves theorem 2.1.

To summarize, the main steps of the proofs are:

(1) Write the partition function as in (4.2);

(2) Make the best possible (essentially optimal) analytic extension for each term
uΛ(Γq) of this sum.

(3) Estimate [uΛ(Γq))]
(k)
µ∗ , for large contours Γq, by the stationary phase method

applied to a Cauchy integral suitably chosen. (The Cauchy integral is independent
of the choice of ∂Dr, but the stationary phase method applies only at a specific
value r(k) of r.)
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(4) Use the existence of the contours Γq
n, with limn V (Γq

n) = ∞, which almost solve
the variational problems (4.1), in order show the existence of a constant C so that

[gq
Λ]

(kn)
µ∗ ∼ Ckn (kn!)

d
d−1 with kn :=

⌊
d− 1

d
β‖Γq

n‖
⌋
.

Remark 4.1. Before giving some details of the implementation of this program
I show heuristically why it may work. For this, I assume that the isoperimetric
inequality is

χ∗
2 V (Γ2)

d−1
d ≤ ‖Γ2‖ , (4.7)

and that there are contours which saturate (4.7), with arbitrary large volumes. For
large contours (see (4.13), (4.14), and (3.13), (3.14)),

−uΛ(Γ2) ≈ φΛ(Γ2) ≈ ω(Γ2) ≈ e−β‖Γ2‖+(z−µ∗)β∆V (Γ2) . (4.8)

Therefore, one expects to have an analytical continuation of uΛ(Γ2) in a complex
neighbourhood of µ∗, which is{

z : |z − µ∗| < ∆−1 χ∗
2

V (Γ2)
1
d

}
,

because for large β one expects that a contour whose volume is smaller than V (Γ2)
is stable in this neighbourhood.

As already mentioned, the core of the proof is to have sharp estimates of the
kth-derivative of uΛ(Γ2) for large contours. One can show41 that if k ≤ k2

+(Γ2), with

k2
+(Γ2) ∼ βχ∗

2V (Γ2)
d−1

d , (4.9)

then not only uΛ(Γ2) is approximately given by (4.8), but that

[uΛ(Γ2)]
(k)
µ∗ ∼ (∆βV (Γ2))ke−β‖Γ2‖ . (4.10)

If Γ2 saturates inequality (4.7), χ∗
2V (Γ2)

d−1
d = ‖Γ2‖, then

(∆βV (Γ2))ke−β‖Γ2‖ = (∆β)ke−βχ∗
2V (Γ2)

d−1
d +k lnV (Γ2) .

This quantity is maximal when

k =
d− 1

d
βχ∗

2V (Γ2)
d−1

d < k2
+(Γ2) .

Therefore this contour, say Γ2
∗, is k-large. Since −[uΛ(Γ2)]

(k)
µ∗ ≥ 0 for all k-large

contours, one has

−
∑

Γ2: k-large

[uΛ(Γ2)]
(k)
µ∗ ≥ [uΛ(Γ2

∗)]
(k)
µ∗ ,

and

−[uΛ(Γ2
∗)]

(k)
µ∗ ∼ (∆β)k

( k

βχ∗
2

d

d− 1

)k d
d−1

e−k d
d−1

∼
[
∆

1

β
1

d−1

1

χ∗
2

d
d−1

( d

d− 1

) d
d−1

]k

k!
d

d−1 .

On the other hand, a k-small contour has a volume at most equal to

V (Γ2) ∼
( k

βχ∗
2

) d
d−1

,

41See remark 4.2 in subsection 4.3 for a simple argument for justifying (4.9).
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which implies that one can choose a disc of radius

r ∼ ∆−1χ∗
2

d
d−1β

1
d−1k−

1
d−1

in order to estimate the contribution of the k-small contours to [g2
Λ]

(k)
µ∗ . This contri-

bution is at most of the order(
∆

1

β
1

d−1χ∗
2

d
d−1

)k

k! k
k

d−1 ≈
[
∆

1

β
1

d−1χ∗
2

d
d−1

e
1

d−1

]k

k!
d

d−1 .

Since
d

(d− 1)
> e

1
d ,

it is dominated by that of the k-large contours. Indeed,

d
(
e

1
d − 1

)
= d

(
e

1
d − 1 − 1

d
+

1

d

)
=
∑
n≥2

1

n!

(1

d

)n−1

+ 1

= 1 +
∑
n≥1

1

(n+ 1)!

(1

d

)n

< 1 − 1

2d
+
∑
n≥1

1

n!

(1

d

)n

= e
1
d − 1

2d
.

4.1. Analytic continuation and isoperimetric problems. It is not very difficult
to show that the weight ω(Γ2) has an analytic continuation in a disc of radius

O(V (Γ2)−
1
d ) centered at µ∗. This is not sufficient. Let42

Rq(n) := inf
m:m≤n

χq(m)

m
1
d

,

where χq(n) is the isoperimetric constant in (4.1).

Lemma 4.1. For any χ′
q < χq(∞), there exists N(χ′

q) such that for all n ≥ N(χ′
q),

χ′
q

n
1
d

≤ Rq(n) ≤ χq(∞)

n
1
d

.

For q = 1, 2, n �→ nRq(n) is increasing in n.

Proof. Let q = 2 and suppose that

R2(n) =
χ2(m)

m
1
d

for m < n.

Then R2(m
′) = R2(n) for all m ≤ m′ ≤ n. Let n′ be the largest n ≥ m such that

R2(n) =
χ2(m)

m
1
d

.

One has n′ <∞, otherwise

0 < R2(m) = R2(n) ≤ χ2(∞)

n
1
d

∀ n ≥ m,

42One knows very little about the variational problems (4.1). Instead of making hypothesis
about the behaviour of these problems, as Isakov did in [I2], the strategy is to avoid discussing
them, as much as possible, despite of the fact that these problems enter in an essential manner
in the proof. This is the reason for introducing Rq(n). The property which one needs is that
n �→ nRq(n) is increasing in n (see lemma 4.1).
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which is impossible. Either

R2(n
′) =

χ2(n
′)

n′ 1
d

or R2(n
′ + 1) =

χ2(n
′ + 1)

(n′ + 1)
1
d

;

for all k ≥ n′ + 1, since χ2(m) is increasing,

R2(k) = inf
m≤k

χ2(m)

m
1
d

= inf
n′≤m≤k

χ2(m)

m
1
d

≥ inf
n′≤m≤k

χ2(n
′)

m
1
d

=
χ2(n

′)

k
1
d

. (4.11)

Inequality (4.11) is true for infinitely many n′; since there exists m such that χ′
2 ≤

χ2(m), the first statement is proved.

On an interval of constancy of R2(n), n �→ naR2(n) is increasing. On the other
hand, if on [m1, m2]

R2(n) =
χ2(n)

n
1
d

,

then n �→ nR2(n) is increasing on [m1, m2] since n �→ χ2(n) and n �→ n1− 1
d are

increasing. �
The next proposition gives the domains of analyticity and the stability properties

of the weights ω(Γ) needed for estimating the derivatives of the pressure.

Proposition 4.1. Let 0 < θ < 1, θ < θ� < 1, and 0 < ε < 1, so that

ρ(1 − θ�) − ε > 0 .

Then there exists β ′
0 ≥ β0, such that for all β ≥ β ′

0 ω(Γ2) is analytic and τ�(β)-stable
in a complex neighborhood of{

z ∈ C : Rez ≤ µ∗(Imz; β) + θ∆−1R2(V (Γ2))
}
∩ U0 .

Moreover ∣∣ d
dz
ω(Γ2)

∣∣ ≤ e−τ�(β)|Γ2| .

Similar properties hold for ω(Γ1) in a complex neighborhood of{
z ∈ C : µ∗(Imz; β) − θ∆−1R1(V (Γ1)) ≤ Rez

}
∩ U0 .

τ�(β) = β(ρ(1 − θ�) − ε).

Proof. ω(Γ2) is τ(β)-stable if Rez ≤ µ∗(ν; β) ∩ U0, and d
dz
ω(Γ2) is τ ′(β)-stable on

the same region (propositions 3.1 and 3.2). Similar statements hold for ω(Γ1) on
Rez ≥ µ∗(ν; β) ∩ U0. Let

In(ν; β) :=
(
µ∗(ν; β) − θ∆−1R1(n), µ∗(ν; β) + θ∆−1R2(n)

)
. (4.12)

As in the proof of B and C of proposition 3.1, one proves by iteration, that on the
intervals In(ν; β), ω(Γq) and d

dz
ω(Γq) are τ�(β)-stable.

To prove the stability of ω(Γq) one verifies (3.15) and (3.16) for some θ′ < θ�.
Suppose that the statement is correct for V (Γq) ≤ n − 1. δ = δ(β) is defined by
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(3.12). Let V (Γ2) = n, z = µ+ iν, and µ ≥ µ∗(ν; β). Then

Re
(
pn−1

1 (z) − pn−1
2 (z)

)V (Γ2)

‖Γ2‖ = Re

∫ µ

µ∗
n

d

dµ

(
pn−1

1 (z) − pn−1
2 (z)

)V (Γ2)

‖Γ2‖

≤ (∆ + 2δ)
(
|µ− µ∗| + |µ∗ − µ∗

n|
)V (Γ2)

d−1
d

‖Γ2‖ V (Γ2)
1
d

≤ (∆ + 2δ)
(
|µ− µ∗| + |µ∗ − µ∗

n|
) n

1
d

χ2(n)

≤ (∆ + 2δ)
(
|µ− µ∗| 1

R2(n)
+ |µ∗ − µ∗

n|
n

1
d

χ2(n)

)
≤ ∆ + 2δ

∆
θ +

2(∆ + 2δ)

β(∆ − 2δ)

δl(n)n
1
d

χ2(n)
.

(3.23) is used for controlling |µ∗−µ∗
n|. If β is large enough, there exists θ < θ′ < θ�,

independent of n, so that

Re
(
pn−1

1 (z) − pn−1
2 (z)

)V (Γ2)

‖Γ2‖ ≤ θ′ .

The stability of d
dz
ω(Γ2) is a consequence of (use (3.14) for controlling |ωn(Γq)|)∣∣ d

dz
ω(Γ2)

∣∣ ≤ β|ω(Γ2)|
(
|Γ2|(C1 + 2δC0) + V (Γ2)(∆ + 2δ)

)
≤ βC3|Γq| d

d−1 |ω(Γ2)| .

�

4.2. Isakov’s representation of the partition function. The pressure gq
Λ is

defined in (4.2), and uΛ(Γq) in (4.4). Thus

[gq
Λ]

(k)
µ∗ = − 1

β|Λ|
∑
Γq⊂Λ

[uΛ(Γq)]
(k)
µ∗ .

One first writes uΛ(Γq) as follows.

ΘΓq(Λ) = Θi(Γq)(Λ) + ω(Γq) Θi(Γq)(Λ(Γq))

= Θi(Γq)(Λ)

(
1 + ω(Γq)

Θi(Γq)(Λ(Γq))

Θi(Γq)(Λ)

)
.

In this expression Θi(Γq)(Λ(Γq)) denotes the restricted partition function

Θi(Γq)(Λ(Γq)) := 1 +
∑ n∏

i=1

ω(Γq
i ) ,

where the sum is over all families of compatible contours {Γq
1, . . . ,Γ

q
n}, Γq

i ≤ i(Γq),
i = 1, . . . , n, and such that {Γq,Γq

1, . . . ,Γ
q
n} is a compatible family. Set

φΛ(Γq) := ω(Γq)
Θi(Γq)(Λ(Γq))

Θi(Γq)(Λ)
. (4.13)

With these notations

uΛ(Γq) = − ln
(
1 + φΛ(Γq)

)
=
∑
n≥1

(−1)n

n
φΛ(Γq)n . (4.14)
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[φΛ(Γ2)n]
(k)
µ∗ is computed using the Cauchy formula,

[φΛ(Γ2)n]
(k)
µ∗ =

k!

2πi

∮
∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz ,

where ∂Dr is the boundary of a discDr of radius r and center µ∗ inside the analyticity
region of proposition 4.1,

U0 ∩
{
z ∈ C : Rez ≤ µ∗(Im(z); β) + θ∆−1R2(V (Γ2))

}
.

The function z �→ φΛ(Γ2)n(z)
(z−µ∗)k+1 is real on the real axis, so that( φΛ(Γ2)n(z)

(z − µ∗)k+1

)
=
φΛ(Γ2)n(z)

(z − µ∗)k+1
.

Consequently

k!

2πi

∮
∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz = Re

{ k!

2πi

∮
∂Dr

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz
}
. (4.15)

Assuming43 that the disc Dr is inside the analyticity region of ω(Γ2), one decom-
poses ∂Dr into

∂Dg
r := ∂Dr ∩ {z : Rez ≤ µ∗(Im(z); β) − θ∆−1R1(V (Γ2))}

and

∂Dd
r := ∂Dr ∩ {z : Rez ≥ µ∗(Im(z); β) − θ∆−1R1(V (Γ2))} .

One writes (4.15) as a sum of two integrals Ig
k,n(Γ2) and Id

k,n(Γ2),

Ig
k,n(Γ2) := Re

{ k!

2πi

∮
∂Dg

r

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz
}

(4.16)

and

Id
k,n(Γ2) := Re

{ k!

2πi

∮
∂Dd

r

φΛ(Γ2)n(z)

(z − µ∗)k+1
dz
}
. (4.17)

An analogous decomposition holds for Γ1 instead of Γ2.

4.3. Estimate of [uΛ(Γq))]
(k)
µ∗ by the stationary phase method. In order to

apply the stationary phase method to evaluate Id
k,n(Γ2), one makes a change of

variable,

ζ := z − µ∗ ,

and writes φΛ(Γ2) as

φΛ(Γ2)(µ∗ + ζ) = φΛ(Γ2)(µ∗) eβ∆V (Γ2)(ζ+g(Γ2)(ζ)) , (4.18)

where g(Γ2) is an analytic function of ζ in a neighborhood of ζ = 0 and g(Γ2)(0) = 0.
Let

µ∗(Im(z); β
)
− θ∆−1R1(V (Γ2)) ≤ Rez ≤ µ∗(Im(z); β

)
+ θ∆−1R2(V (Γ2)) .

43From (3.22) it follows that there exists C′ independent of ν and n, such that

µ∗
n(ν;β) ≥ µ∗

n(0;β) − C′ν2 .

This implies that the disc Dr of center µ∗ and radius r = θ∆−1R2(V (Γ2)) is inside the analyticity
region of ω(Γ2), provided that V (Γ2) is large enough.
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∂Dd
r

∂Dg
r

r

µ∗(ν; β)

ν

µ
µ∗(0; β)

θ�−1R1(V (Γ2))

θ�−1R2(V (Γ2))

Figure 2: The decomposition of the integral into Ig
k,n(Γ2) and Id

k,n(Γ2)

In this region (see figure 2) one controls the weights of contours with boundary
conditions ψ2 and ψ1. Therefore, one controls ln Θ1(Int1 Γ2), and

φΛ(Γ2) = exp
[
− βH(ϕΓ2|ψ2) + ln

Θ1(Int1 Γ2)

Θ2(Int1 Γ2)
+ ln

Θi(Γ2)(Λ(Γ2))

Θi(Γ2)(Λ)︸ ︷︷ ︸
:=G(Γ2)

]
.

By definition z = ζ + µ∗, so that (see (3.4))

−βH(ϕΓ2|ψ2)(z) + G(Γ2)(z) = −βH(ϕΓ2 |ψ2)(µ
∗) + β∆V (Γ2)ζ

− βa(ϕΓ2)ζ +

∫ µ∗+ζ

µ∗

d

dz′
G(Γ2)(z′)dz′ + G(Γ2)(µ∗)

= −βH(ϕΓ2 |ψ2)(µ
∗) + G(Γ2)(µ∗) + β∆V (Γ2)ζ

+

∫ µ∗+ζ

µ∗

( d

dz′
G(Γ2)(z′) − βa(ϕΓ2)

)
dz′︸ ︷︷ ︸

:=β∆V (Γ2)g(Γ2)(ζ)

.

This proves (4.18).

d

dζ
g(Γ2)(ζ) =

1

β∆V (Γ2)

( d

dζ
ln Θ1(Int1 Γ2) − d

dζ
ln Θ2(Int1 Γ2) (4.19)

+
d

dζ
ln

Θi(Γ2)(Λ(Γ2))

Θi(Γ2)(Λ)
− βa(ϕΓ2)

)
.

The last term of the right-hand side of (4.19) is estimated using (3.5). The first
two terms are estimated using proposition 4.1 and lemma 3.1. The third term
is estimated by writing explicitly the logarithm of the quotient, using (3.9). After
cancellation the resulting series is differentiated term by term and is estimated using
the basic estimates of proposition 4.1 and lemma 3.1. For β large enough,∣∣ d

dζ
g(Γ2)(ζ)

∣∣ ≤ C7 e−τ�(β) + C8
|Γ2|
V (Γ2)

, (4.20)
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for suitable constants C7 and C8. Moreover, there exists a constant C9 so that

exp
[
− β‖Γ2‖(1 + C9δ)] ≤ φΛ(Γ2)(µ∗) ≤ exp[−β‖Γ2‖(1 − C9δ)] . (4.21)

Let

c(n) := nβ∆V (Γ2) .

The basic observation of Isakov is that some derivatives of φΛ(Γ2)n(µ∗ + ζ) can be
computed by the stationary phase method, and that the result is approximately the
same as if φΛ(Γ2)n(µ∗ + ζ) were an exponential function:

φΛ(Γ2)n(µ∗ + ζ) = φΛ(Γ2)n(µ∗) enβ∆V (Γ2)(ζ+··· ) ≈ φΛ(Γ2)n(µ∗) enβ∆V (Γ2)(ζ) .

Once this observation is done, then the mathematics is standard. In the next remark
I illustrate how one can estimate the derivatives of ecz at z = 0.

Remark 4.2. I estimate the kth derivative of ecz at z = 0. The Cauchy formula
gives

dk

dxk
ecz

∣∣∣
z=0

= k!
1

2πi

∫
C

ecz

zk+1
dz ,

where I choose for C the boundary of a disc of radius r, centered at z = 0. Let
z = reiα. Then

1

2πi

∫
C

ecz

zk+1
dz =

1

2πrk

∫ π

−π

exp
(
cr cosα + i(cr sinα− kα)

)
dα

=
1

2πrke−cr

∫ π

−π

exp
(
cr(cosα− 1)

)
cosψ(α) dα ,

where ψ(α) := cr sinα − kα. (The term i sinψ(α) gives no contribution to the
integral.) The radius r is a parameter, which is free, and one looks for α so that

d

dα

(
cosα− 1

)
= 0 and

d

dα
ψ(α) = 0 .

One gets two conditions

sinα = 0 and cr cosα− k = 0 .

These two conditions can be satisfied with α = 0 and cr = k. Hence

1

2πi

∫
C

ecz

zk+1
dz =

ck

2πkke−k

∫ π

−π

exp
(
k(cosα− 1)

)
cosψ(α) dα .

One expands cosα and ψ(α) around α = 0,

k(cosα− 1) � −kα
2

2
and ψ(α) � −kα

3

3!
.

I estimate here the kth derivative of e−cx at x = 0 by replacing ψ(α) by 0 and by
integrating over R,

k!
ck

2πkke−k

∫ ∞

−∞
exp

(
− kt2

2

)
dt = ck

k!√
2πkkke−k

� ck ,

using Stirling’s formula for k! in the denominator.

From this result it follows that one can estimate sharply the kth derivative of ecz

at z = 0 if one chooses in the Cauchy formula a disc with radius r = k/c. One can
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now justify (4.9). Applying this result to φΛ(Γ2), with g(Γ2)(ζ) = 0 (see (4.18)),
one expects to have sharp estimates for the kth derivative if

k

β∆V (Γ2)
≤ ∆−1χ∗

2V (Γ2)
1
d (maximum radius which can be used) ,

i.e. if
k ≤ k+(Γ2) := βV (Γ2)

d−1
d χ∗

2 .

One parametrizes ∂Dd
r by z := µ∗ + reiα, −α1 ≤ α ≤ α2, 0 < αi ≤ π. Using

(4.18),

Id
k,n(Γ2) = k!

φ∗
Λ(Γ2)n

2πrk

∫ α2

−α1

ec(n)r cos α+c(n)Re g(Γ2)(ζ)
[
cos(ψ̃(α))

]
dα , (4.22)

with
ψ̃(α) := c(n)r sinα + c(n) Im g(Γ2)(ζ) − kα .

One searches for a stationary phase point ζk,n = rk,neiαk,n defined by the equations

d

dα

(
c(n)r cosα+ c(n)Re g(Γ2)

(
reiα

))
= 0 and

d

dα
ψ̃(α) = 0 .

These equations are equivalent to the equations ( ′ denotes the derivative with
respect to ζ)

c(n) sinα
(
1 + Re g(Γ2)′(ζ)

)
+ cosαIm g(Γ2)′(ζ) = 0 ;

c(n)r cosα
(
1 + Re g(Γ2)′(ζ)

)
− r sinαIm g(Γ2)′(ζ) = k .

Since g(Γ2) is real on the real axis, αk,n = 0 and rk,n is solution of

c(n)r
(
1 + g(Γ2)′(r)

)
= k . (4.23)

Lemma 4.2. Let αi ≥ π/4, i = 1, 2, A ≤ 1/25 and c(n) ≥ 1. If g(ζ) is analytic in
ζ in the disc {ζ : |ζ | ≤ κ}, real on the real axis, and for all ζ in that disc∣∣ d

dζ
g(Γ2)(ζ)

∣∣ ≤ A ,

then there exists k0(A) ∈ N, such that for all integers k,

k ∈
[
k0(A), c(n)(1 − 2

√
A)κ

]
,

there is a unique solution 0 < rk,n < κ of (4.23). Moreover,

ec(n)rk,n+c(n) g(Γ2)(rk,n)

10
√
c(n)rk,n

≤ 1

2π

∫ α2

−α1

ec(n)r cos α+c(n)Re g(Γ2)
[
cos(ψ̃(α))

]
dα

≤ ec(n)rk,n+c(n) g(Γ2)(rk,n)√
c(n)rk,n

.

Proof. Existence and uniqueness of rk,n is a consequence of the monotonicity of
r �→ c(n)r

(
1 + g(Γ2)′(r)

)
. The estimates of the integral are obtained as above, by

expanding around the stationary phase point. The details of that computation are
given in appendix of [I1]. �

One defines

k+(Γq|θ, A, β) := θ(1 − 2
√
A)βV (Γq)Rq(V (Γq)) . (4.24)
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Under the conditions of lemma 4.2, if

k ∈
[
k0(A), k+(Γ2|θ, A, β)

]
,

then

k − kA

(1 + A)
=

k

(1 + A)
≤ c(n)rk,n ≤ k

(1 − A)
= k +

kA

(1 − A)
,

and

c(n)|g(Γ2)(rk,n)| = c(n)
∣∣∣ ∫ rk,n

0

g(Γ2)′(ζ)dζ
∣∣∣ ≤ Ac(n)rk,n ≤ k

A

1 − A
.

Therefore, setting

c+(A) = (1 + A) exp
[ 2A

1 −A

]
,

one gets (see (4.22))

Id
k,n(Γ2) ≤

√
1 + A√
k

ck+ c(n)k k! e
k

kk
φ∗

Λ(Γ2)n

�
√

2π(1 + A)ck+ c(n)k φ∗
Λ(Γ2)n →

√
2πc(n)k φ∗

Λ(Γ2)n as A→ 0.

Recall that φ∗
Λ(Γ2)n verifies inequalities (4.21), that is, if β is large,

φ∗
Λ(Γ2)n ≈ e−βn‖Γ2‖ .

Similarly, if

c−(A) = (1 − A) exp
[
− 2A

1 −A2

]
,

then

Id
k,n(Γ2) ≥

√
2π(1 − A)

10
ck− c(n)k φ∗

Λ(Γ2)n →
√

2π

10
c(n)k φ∗

Λ(Γ2)n as A→ 0.

4.4. Estimate of the kth-derivative of the pressure. One estimates the de-

rivative [g2
Λ]

(k)
µ∗ for large enough k and β. The result is formulated in proposition

4.2.

The parameters θ and A are not yet fixed. Two new parameters are introduced,
ε′ and η. It is important to see that one can choose these parameters in a consistent
manner. Let 0 < θ < 1, A ≤ 1/25, and set

θ̂ := θ(1 − 2
√
A) .

Let ε′ > 0 and χ′
2 so that

(1 + ε′)χ′
2 > χ2(∞) . (4.25)

I fix the values of θ, and ε′ by the following conditions. I choose 0 < A0 < 1/25; the
parameters θ and ε′ are chosen so that

e
1
d

1

θ(1 − 2
√
A0)

<
d

d− 1

c−(A0)
d−1

d

1 + ε′
and

1 − 2
√
A0

1 + ε′
d

d− 1
> 1 . (4.26)

This is possible, because
d

(d− 1)
> e

1
d .

Given θ, the value of θ� is fixed in proposition 4.1. From now on the values of θ, θ�

and ε′ are fixed once for all.
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Notice that conditions (4.26) are still satisfied with the same values of θ and ε′ if
one replaces in (4.26) A0 by 0 < A < A0. This means that one is still free to choose
A < A0. A is fixed in subsection 4.4.2.

Given k, there is a natural distinction between contours Γ2, according to the fact
that k ≥ k+(Γq|θ, A, β), or k < k+(Γq|θ, A, β) (see (4.24)).

Definition 4.1. A contour Γq is a

(1) k-small contour, if θ̂βV (Γq)Rq(V (Γq)) ≤ k;

(2) fat contour, if for η ≥ 0, V (Γq)
d−1

d ≤ η ‖Γq‖;
(3) k-large and thin contour, if θ̂βV (Γq)Rq(V (Γq)) > k, V (Γq)

d−1
d > η ‖Γq‖.

The parameter η is fixed in subsection 4.4.1.

I now make precise what I mean by k large enough. The answer depends on the
parameters A, η and β.

By lemma 4.1 V �→ V R2(V ) is increasing in V , and there exists N(χ′
2) such that

R2(V ) ≥ χ′
2

V
1
d

if V ≥ N(χ′
2) . (4.27)

The first condition is that there are k-small contours, which have a large volume.
Precisely, one assumes that there is a k-small contour Γ2 such that V (Γ2) ≥ N(χ′

2).
The second condition is that one can apply the stationary phase analysis for the
large and thin contours. Therefore, one assumes (see lemma 4.2 and (4.20)) that
k > k0(A), and that for a k-large and thin contour inequalities (4.28) are verified,

C8
|Γ2|
V (Γ2)

≤ C8

ρηV (Γ2)
1
d

≤ A

2
. (4.28)

Moreover, one assumes that β is large enough, so that (see (4.20) and (4.28))∣∣ d
dζ

g(Γ2)(ζ)
∣∣ ≤ A .

The third condition is similar44 to (4.28). It is assumed to be satisfied in order
to control the large and thin contours. These conditions imply that there exists
K(A, η, β) < ∞ such that if k ≥ K(A, η, β), then k is large enough. From now on
k ≥ K(A, η, β).

4.4.1. Contribution to [gq
Λ]

(k)
µ∗ from the k-small and fat contours. Let Γ2 be a k-small

contour. Since V �→ R2(V ) is decreasing in V , uΛ(Γ2) is analytic in the region

{z : Rez ≤ µ∗(Imz; β) + θ∆−1R2(V
∗)} ∩ U0 ,

where V ∗ is the maximal volume of k-small contours. V ∗ satisfies

V ∗ d−1
d ≤ k

θ̂βχ′
2

.

44Condition (2.39) in [FrPf1],

C1

ρ∆(1 −A0)ηV (Γ2)
1
d

≤ 1
10
.

.
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Hence (see (4.27))

θ∆−1R2(V
∗) ≥ θ̂∆−1χ′

2V
∗− 1

d ≥ ∆−1
(
θ̂χ′

2

) d
d−1β

1
d−1k−

1
d−1 .

One estimates the derivative of uΛ(Γ2) by the Cauchy formula with a disc of center

µ∗ and radius ∆−1
(
θ̂χ′

2

) d
d−1β

1
d−1k−

1
d−1 . There exists a constant C10 such that∣∣∣ ∑

Γ2:Int Γ2�0

Γ2 k-small

[uΛ(Γ2)]
(k)
µ∗

∣∣∣ ≤ C10

( ∆

β
1

d−1 (θ̂χ′
2)

d
d−1

)k

k! k
k

d−1 .

If one chooses η small enough, then the contribution of fat contours (which are
not k-small) is negligible compare to the contribution of the small contours. One
fixes the value of the parameter η, so that this is the case.

4.4.2. Contribution to [gq
Λ]

(k)
µ∗ from the k-large and thin contours. The k-large and

thin contours are the important contours. For them one has lower and upper

bounds for [φΛ(Γ2)n]
(k)
µ∗ . Using these bounds one gets upper and lower bounds on

−[uΛ(Γ2)]
(k)
µ∗ . There are two cases.

I. Assume that R1(V (Γ2)) ≥ R2(V (Γ2)), or that V (Γ2) is so large that

θ̂βV (Γ2)R1(V (Γ2)) > k .

Under these conditions one can apply lemma 4.2 with a disc Drk,n
so that ∂Drk,n

=

∂Dd
rk,n

. Indeed, either R1(V (Γ2)) ≥ R2(V (Γ2)), and then one applies lemma 4.2 with

R = θ∆−1R2(V (Γ2)), or this is not true, but the other condition is valid, so that one
chooses R = θ∆−1R1(V (Γ2)). In both cases rk,n < R, which implies ∂Drk,n

= ∂Dd
rk,n

.

From the estimates for [φΛ(Γ2)n]
(k)
µ∗ , one obtains estimates on [uΛ(Γ2)]

(k)
µ∗ :

there exists a function D(k), limk→∞D(k) = 0, such that for β sufficiently large and
A sufficiently small,

(1 −D(k)) [φΛ(Γ2)]
(k)
µ∗ ≤ −[uΛ(Γ2)]

(k)
µ∗ ≤ (1 +D(k)) [φΛ(Γ2)]

(k)
µ∗ .

II. The second case is when

θ̂βV (Γ2)R1(V (Γ2)) ≤ k ≤ θ̂βV (Γ2)R2(V (Γ2)) .

Since the contours are also thin,

β‖Γ2‖ ≤ η−1θ̂−1χ1(1)−1βθ̂χ1(1)V (Γ2)
d−1

d (4.29)

≤ η−1θ̂−1χ1(1)−1βθ̂V (Γ2)R1(V (Γ2))

≤ η−1θ̂−1χ1(1)−1k ≡ λk .

One chooses R = β∆−1R2(V (Γ2)) in lemma 4.2. The integration in (4.15) is de-
composed into two parts (see figure 2), and one shows that the contribution from
the integration over ∂Dg

rk,n
is negligible for large enough β. At that point one uses

the fact that one can choose A small. This fixes the value of A. Inequality (4.29) is
crucial, because it implies that the contribution from the integration over ∂Dd

rk,n
is

not too small, because the surface energy of a contour is not too large.
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Lemma 4.3. There exists 0 < A′ ≤ A0 such that for all β sufficiently large, the
following holds. If k ≥ K(A′, η, β) and Γ2 is a k-large and thin contour, then

−[uΛ(Γ2)]
(k)
µ∗ ≥ 1

20
(1 −D(k))

(
β∆V (Γ2)

)k
ck− φ

∗
Λ(Γ2) .

Proposition 4.2. There exists β ′ such that for all β > β ′, the following holds.
There exists an increasing diverging sequence {kn} such that for each kn there exists
Λ(Ln) such that for all Λ ⊃ Λ(Ln)

[g2
Λ]

(kn)
µ∗ ≥ Ckn

14 kn!
d

d−1 ∆knβ− kn
d−1 χ′

2
− dkn

d−1 .

C14 > 0 is a constant independent of β, kn and Λ.

Proof. One compares the contributions of the small and fat contours with that of
the large and thin contours for k ≥ K(A′, η, β). The contribution of the small and
of the fat contours is at most

C10

(
∆ β− 1

d−1 χ′
2
− d

d−1

)k( e
1
d

θ(1 −
√
A′)

)k d
d−1

k!
d

d−1 .

The contribution to [g2
Λ]

(k)
µ∗ of each large and thin contour is nonnegative. By as-

sumption (4.25) and the definition of the isoperimetric constant χ2, there exists a
sequence Γ2

n, n ≥ 1, such that

lim
n→∞

‖Γ2
n‖ → ∞ and V (Γ2

n)
d−1

d ≥ ‖Γ2
n‖

(1 + ε′)χ′
2

.

Since xk d
d−1 e−x has its maximum at x = k d

d−1
, let

kn :=

⌊
d− 1

d
β‖Γ2

n‖
⌋
.

For any n, Γ2
n is a thin and kn-large volume contour, since by (4.26)

β (1 − 2
√
A′)V (Γ2)R2(V (Γ2)) ≥ β (1 − 2

√
A′)V (Γ2)

d−1
d χ′

2

≥ (1 − 2
√
A′)

1 + ε′
β‖Γ2

n‖ ≥ kn .

Let Λ ⊃ Γ2
n. Using lemma 4.3 one shows that −[uΛ(Γ2

n)]
(kn)
µ∗ is bounded below by

C13

(
∆ β− 1

d−1 χ′
2
− d

d−1

)kn
( d

d− 1

c−(A′)
d−1

d

1 + ε′
e−O(δ)

)kn
d

d−1
kn!

d
d−1 .

By the choice (4.26), if δ is small enough, i.e. β large enough, then

e
1
d

θ(1 − 2
√
A′)

<
d

d− 1

c−(A′)
d−1

d

1 + ε′
e−O(δ) .

Hence the contribution of the small and fat contours is negligible for large kn.
Let Λ(Ln) be a box which contains at least |Λ(Ln)|/4 translates of Γ2

n. For any
Λ ⊃ Λ(Ln), if kn and β are large enough, then there exists a constant C14 > 0,
independent of β, kn and Λ, such that

[g2
Λ]

(kn)
µ∗ ≥ Ckn

14 kn!
d

d−1 ∆knβ− kn
d−1 χ′

2
− dkn

d−1 .

�
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5. Non-analyticity and the van der Waals limit

This section is devoted to an exposition of the main results of Friedli’s PhD thesis
[Fr]. I do not give all details, since they can be found in [FrPf2] or [Fr], and because
several arguments are similar to those of section 4.

It is important to understand how the breakdown of analyticity at a first order
phase transition point relates to the range of interaction, and how it is restored in
the mean field limit. This natural and pertinent question has been formulated and
studied for the first time, as far as I know, by Sacha Friedli, who investigated the
ferromagnetic Kac-Ising model in the van der Waals limit. This limit gives a way
of interpolating finite range interaction systems and mean field models. The scaling
parameter 0 < γ < 1 which is used in the van der Waals limit is directly related to
the inverse range of the interaction. For any γ the range of the interaction is finite,
and the interaction of a given spin with all other spins remains uniformly bounded
in γ. From theorem 2.1 one deduces the existence of β0(γ) so that for any β > β0(γ)
there is no analytic continuation of the pressure at a first order phase transition.
However, the validity of this result, with respect to the temperature, is not good
enough if one wants to take the limit γ → 0, because limγ β0(γ) = ∞. Sacha Friedli
proved that there exists a temperature β�, independent of γ, and γ0, so that for any
β ≥ β� and any 0 < γ ≤ γ0 the pressure pγ has no analytic continuation at the
first order phase transition point h = 0. Furthermore, there exists also a constant
C = C(β), independent of γ, so that∣∣p(k)

γ (0±)
∣∣ ≤ Ckk! for all k ≤ k1(γ), with k1(γ) = γ−d.

Thus, for the Kac-Ising ferromagnet on Zd (d ≥ 2) at low temperature, the pressure
has no analytic continuation at the transition point as long as the range of inter-
action is finite (γ > 0). Analytic continuation occurs only after the van der Waals
limit (γ → 0). One can prove similar results concerning the free energy fγ for given
magnetization m, which is related to the pressure pγ by a Legendre transformation.
In the lattice gas interpretation of the model, this thermodynamic potential fγ is
the (Helmholtz) free energy for given particle density. It is a convex function of m,
and in the van der Waals limit f0(m) := limγ→0 fγ(m) is the convex envelope of the
mean field free energy fmf(m) (see theorem 1.1),

fmf(m) = −1

2
m2 − 1

β
I(m) with m ∈ [−1,+1] . (5.1)

In this formula I(m) is the entropy term,

I(m) := −1 −m

2
ln

1 −m

2
− 1 +m

2
ln

1 +m

2
.

When β ≤ 1, fmf is a strictly convex function of m, but when β > 1, f0 has a plateau
for m ∈ [−m∗(β),+m∗(β)], where m∗(β) is the positive solution of the mean field
equation m = tanh(βm). f0 is analytic on (−1,−m∗(β)) and (+m∗(β),+1), and
the analytic continuation of f0(m) beyond ±m∗(β) is given by the mean field free
energy (5.1). After the van der Waals limit, one has the same situation as in the
van der Waals-Maxwell theory.

The main difficulty is to prove the existence of β�. It is necessary to study the
model on a coarse-grained scale, related to the range γ−1 of the interaction. The
coarse-grained formulation of the model is based on a recent paper of Bovier and
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+m∗(β)−m∗(β)

−1 +1
f0(m)

Figure 3: The free energy f0 when β > 1. The dotted line is the analytic continuation provided
by fmf .

Zahradńık [BoZ], in which this problem is solved. Once the coarse-grained descrip-
tion of the model is done, the rest of the analysis follows the same pattern as in
section 4, and therefore I shall not expose it again. Due to the symmetry of the
model, one knows that the phase transition point occurs at zero magnetic field.
There is “no section 3” in this case. On the other hand, the contour models are
more complicated because there are interactions between contours besides the basic
hard-core condition. This also shows that theorem 2.1 can be proved in a more
general context than that of section 2.

5.1. Main results. The model is a ferromagnetic Ising model with spin-variable
σi = ±1 and interaction

Jγ(x) = cγγ
dς(γx) ,

with 0 < γ < 1, and ϕ : Rd → R+ a function whose support is the cube [−1,+1]d,
and such that ∫

ς(x)dx = 1 .

The constant cγ in the definition of the interaction is chosen so that∑
x∈Zd: x =0

Jγ(x) = 1 .

The inverse of the scaling parameter γ is the range of the interaction. Spin config-
urations are denoted in this section by σ or η. ΩΛ is the set of spin configurations
in Λ and Ω the set of spin configurations on Zd. The restriction of a configuration
σ to a subset A ⊂ Zd is denoted by σA.

For a finite Λ and σ ∈ ΩΛ, the Kac-Ising hamiltonian is

Hh
Λ(σ) := −

∑
{i,j}⊂Λ

i=j

Jγ(i− j)σiσj − h
∑
i∈Λ

σi , h ∈ R .

The parameter h is the magnetic external field, and the magnetization in Λ is

mΛ(σ) =
1

|Λ|
∑
i∈Λ

σi ∈ [−1,+1] .

The canonical partition function is

Z(Λ, m) :=
∑

σΛ∈ΩΛ:
mΛ(σ)=m

exp
(
− βH0

Λ(σΛ)
)
,
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and the free energy for given magnetization m

fγ(m) := − lim
Λ↑Zd

1

β|Λ| lnZ(Λ, m(Λ)) .

In the definition of fγ the thermodynamic limit Λ ↑ Z
d is taken along a sequence of

cubes, and the sequence m(Λ) is such that m(Λ) → m.

There are few technical restrictions for the function ς, which can be found in [Fr].
In these lectures I always consider a specific and convenient choice,

ς(x) :=

{
2−d if x ∈ [−1, 1]d;

0 otherwise.

In this setting, the main result for the free energy fγ is the following theorem.

Theorem 5.1. There exists β� and γ0 > 0 such that for all β ≥ β�, γ ∈ (0, γ0), fγ

is analytic at any m ∈ (−1,+1), except at ±m∗(β, γ), where

m∗(β, γ) := p(1)
γ (0+) .

fγ has no analytic continuation beyond −m∗(β, γ) along the real pathm < −m∗(β, γ).
fγ has no analytic continuation beyond m∗(β, γ) along the real path m > m∗(β, γ).

This result is in favor of the idea that finiteness of the range of interaction is
responsible for absence of analytic continuation.

The proof of theorem 5.1 is obtained by working in the more appropriate grand
canonical ensemble (in the lattice gas terminology), in which the constraint on the
magnetization is replaced by a magnetic field. Let

Z(Λ) :=
∑

σ∈ΩΛ

exp
(
− βHh

Λ(σ)
)
.

As before, the pressure is

pγ(h) := lim
Λ↑Zd

pγ,Λ(h) with pγ,Λ(h) :=
1

β|Λ| lnZ(Λ) .

The free energy and pressure are related by a Legendre transform:

fγ(m) = sup
h∈R

(hm− pγ(h)) .

The analytic properties of fγ at ±m∗(β, γ) will be obtained from those of pγ at
h = 0. By the theorem of Lee and Yang [LeY], pγ is analytic in the complex plane
except on the imaginary axis.

Theorem 5.2. There exists β�, γ0 > 0 and a constant Cr > 0 such that for all
β ≥ β�, γ ∈ (0, γ0), the following holds:
(1) The pressure pγ is C∞ at 0±. There exists a constant C+ > 0 such that for all
k ∈ N,

|p(k)
γ (0±)| ≤

(
C+γ

d
d−1β− 1

d−1

)k
k!

d
d−1 + Ck

r k! .

(2) The pressure has no analytic continuation at h = 0. More precisely, there exists
C− > 0 and an unbounded increasing sequence of integers k1, k2, . . . such that for
all k ∈ {k1, k2, . . . },

|p(k)
γ (0±)| ≥

(
C−γ

d
d−1β− 1

d−1

)k
k!

d
d−1 − Ck

r k! .
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The lower bound in theorem 5.2 becomes irrelevant when γ tends to 0. The
integers ki depend on γ and β, and

lim
γ→0

ki = +∞ .

From the upper bound of theorem 5.2 it is easy to get

Corollary 5.1. There exists C = C(β) such that for small values of k, i.e. for
k ≤ γ−d, the following upper bound is true,

|p(k)
γ (0±)| ≤ Ckk! .

The crossover in the behaviour of the derivatives of the pressure is represented on
figure 4.

k1 k2 k3 . . .

p
(k)
γ (0) ∼ k! p

(k)
γ (0) ∼ k!

d
d−1

N

γ−d

Figure 4: The derivatives of the pressure at h = 0, when γ > 0. The first ones (k ≤ γ−d) behave
like those of an analytic function, but non-analyticity always dominates for large k.

Proof of theorem 5.1. Using the symmetry pγ(h) = pγ(−h),
fγ(m) = sup

h≥0

(
hm− pγ(h)

)
.

By the theorem of Lee and Yang, h �→ pγ(h) and m �→ mγ(h) := p
(1)
γ (h) are analytic

in {Reh > 0}. For all m ∈ (m∗, 1),

fγ(m) = h(m)m− pγ(h(m)) ,

where hγ(m) is the unique solution of the equation m = mγ(h). If h ≥ 0, GKS
inequalities imply

p(2)
γ (h) = β

∑
j∈Zd

〈σ0σj〉h − 〈σ0〉h 〈σj〉h ≥ β
(
〈σ0σ0〉h − 〈σ0〉h 〈σ0〉h

)
= β

(
1 − 〈σ0〉2h

)
.

Since p
(2)
γ (h) 
= 0 for all h > 0, the biholomorphic mapping theorem45 implies that

m �→ hγ(m) is analytic in a complex neighbourhood of each m ∈ (m∗, 1). So fγ,
which is a composition of analytic maps, is analytic on (m∗, 1).

Proof that fγ has no analytic continuation at m∗. Assume this is wrong.

h(1)
γ (m∗) = lim

m↘m∗
h(1)

γ (m) = lim
h↘0

m(1)
γ (h)−1 = lim

h↘0
p(2)

γ (h)−1 
= 0 , (5.2)

since p
(2)
γ (0+) is bounded at h = 0. Again, (5.2) implies that the inverse of hγ =

hγ(m) can be inverted in a neighbourhood of m∗ and that the inverse, mγ = mγ(h),
is analytic at h = 0. This is a contradiction with theorem 5.2. �

45Let g : D → C be an analytic function, z0 ∈ D be a point such that g′(z0) 
= 0. Then there
exists a domain V ⊂ D containing z0, such that the following holds: V ′ = g(V ) is a domain, and
the map g : V → V ′ has an inverse g−1 : V ′ → V which is analytic, and which satisfies, for all
ω ∈ V ′, g−1′(ω) =

(
g′(g−1(ω))

)−1
. The proof of this result can be found in [Rem1], pp. 281-282.
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5.2. Coarse-grained description of the model. In this subsection I write the
model as a contour model with restricted phases. The contours are defined on
a coarse-grained scale, which is of the order of the interaction range γ−1. The
Peierls condition is verified with a constant independent of γ (subsection 5.2). Then
I consider the analysis of the restricted phases, which play the role of the ground-
states in the standard the Pirogov-Sinai theory. All these three subsections are based
on [FrPf2]. The proof of theorem 5.2 follows the pattern of the proof of theorem 2.1,
with supplementary technical difficulties, since the fluctuations within the restricted
phases induce many-body and long-range interactions among contours.

I first introduce some notations. Let N ≥ 1;

BN (x) := {y ∈ Z
d : |x− y| ≤ N} and B•

N(x) := BN(x)\{x} .
The N -neighbourhood of Λ ⊂ Z

d is

[Λ]N :=
⋃
x∈Λ

BN (x) .

If σΛ ∈ ΩΛ, ηΛc ∈ ΩΛc , the concatenation σΛηΛc ∈ Ω is by definition:

(σΛηΛc)i =

{
(σΛ)i if i ∈ Λ ,

(ηΛc)i if i ∈ Λc .

The symbol # is used to denote either of the symbols + or −, or the constant
configuration taking the value # at each site of Z

d.

The interaction is rewritten as

Jγ(x) :=

⎧⎨⎩
1∣∣B•

γ−1(0)
∣∣ if 0 < |x| ≤ γ−1

0 otherwise.

As in the Pirogov-Sinai theory, the first step is to define the notion of a correct
point, respectively incorrect point of a spin configuration. A point j is (δ,+)-correct
for σ if in its γ−1-neighbourhood there are not too many spins with value −1. The
value of σj itself does not matter. Recall that γ−1 is the range of the interaction.

Definition 5.1. Let δ ∈ (0, 1), σ ∈ Ω, i ∈ Z
d.

(1) i is (δ,+)-correct for σ if |B•
γ−1(i) ∩ {j : σj = −1}| ≤ δ

2
|Bγ−1(i)|.

(2) i is (δ,−)-correct for σ if |B•
γ−1(i) ∩ {j : σj = +1}| ≤ δ

2
|Bγ−1(i)|.

(3) i is δ-correct for σ if it is either (δ,+)- or (δ,−)-correct for σ.
(4) i is δ-incorrect for σ if it is not δ-correct.

If δ is sufficiently small, then in a γ−1-neighbourhood of a (δ,+)-correct point, all
points are either (δ,+)-correct or they are incorrect. So, (δ,+)-correct points are
distant from (δ,−)-correct points.

Lemma 5.1. Let δ ∈ (0, 2−d), σ ∈ Ω. Then
(1) If i is (δ,+)-correct, the box Bγ−1(i) contains either (δ,+)-correct or δ-incorrect
points.
(2) If i is (δ,−)-correct, the box Bγ−1(i) contains either (δ,−)-correct or δ-incorrect
points.
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Proof. Let i be (δ,+)-correct for σ, and j ∈ Bγ−1(i). Clearly

|Bγ−1(i) ∩ Bγ−1(j)| ≥ 1

2d
|Bγ−1(i)| .

Therefore, there are at least

1

2d
|Bγ−1(i)| − δ

2
|Bγ−1(i)| ≥ 1

2

1

2d
|Bγ−1(i)|

points, which are (δ,+)-correct in Bγ−1(j), i.e. j cannot be (δ,−)-correct. �
From now on δ is fixed in (0, 2−d). The cleaned configuration σ ∈ Ω is defined by

σi :=

⎧⎪⎨⎪⎩
+1 if i is (δ,+) -correct for σ,

−1 if i is (δ,−) -correct for σ,

σi if i is δ-incorrect for σ.

For any set M ⊂ Z
d, the partial cleaning σMσMc coincides with σ on M and with σ

on M c. The cleaning and partial cleaning are always done according to the original
configuration σ, with the fixed δ.

The set of δ-incorrect points of the configuration σ is denoted by Iδ(σ). The
important property of the cleaning operation is that it can only change incorrect
points for σ into correct points for the (partially) cleaned configuration.

Lemma 5.2. (I) Let M ⊂ Zd. If i is (δ,+)-correct for σ, then it remains (δ,+)-
correct for σMσMc. If i is (δ,−)-correct for σ, then it remains (δ,−)-correct for
σMσMc.
(II) Let M1 ⊂M2, δ

′ ∈ (0, δ]. Then Iδ′(σM1σMc
1
) ⊂ Iδ′(σM2σMc

2
).

Proof. (I) If i is, say, (δ,+)-correct for σ, then the cleaning of σ has the only effect,
in the box Bγ−1(i), of changing some − spins into + spins (and never + spins into −
spins). This is a consequence of lemma 5.1. Therefore the i remains (δ,+)-correct
for σMσMc .
(II) Let i be a (δ′,+)-correct point of σM2σMc

2
. One shows that it is also a (δ′,+)-

correct point of σM1σMc
1
.

The two configurations σM2σMc
2

and σM1σMc
1

differ only on M2\M1. Let k ∈
M2\M1. There are three possibilities for the spin at k.
(1) If k is (δ,+)-correct for σ then σk = +1.
(2) If k is δ-incorrect for σ then σk = σk = (σM2σMc

2
)k.

(3) The last possibility, a priori, is that k is (δ,−)-correct for σ. By (I), if k is (δ,−)-
correct for σ, then k is also (δ,−)-correct for σM2σMc

2
, and by lemma 5.1, i cannot

be (δ,+)-correct for σM2σMc
2
. This contradicts the fact that i is (δ′,+)-correct for

σM2σMc
2
. Since only (1) and (2) occur, the lemma is proved. �

I now turn to the definition of the contours. Let C(l) be a partition of Zd made
of disjoint cubes of side length l ∈ N, l = νγ−1 with ν > 2, and whose centers lie on

the sites of a fixed sub-lattice of Zd. If i ∈ Zd, then C
(l)
i is the unique element of the

partition C(l), which contains the site i. The family of all subsets of Zd, which are
unions of elements of C(l), is denoted by L(l). For any set A ⊂ Zd, the thickening of
A is

{A}l :=
⋃
i∈A

C
(l)
i .
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As in the Pirogov-Sinai theory, contours are defined by δ-incorrect points. Since
they are defined on the coarse-grained scale l, a possible definition of the boundary
of a configuration would be

M ′ = {[Iδ(σ)]γ−1}l .

Notice that any j 
∈ M ′ is either (δ,+)-correct or (δ,−)-correct. If the spin at
j 
∈ M ′ is (δ,+)-correct ((δ,−)-correct), then after cleaning it is a +-spin (−-spin).
Moreover, by definition of correct/incorrect points, if i ∈ M ′, with |i − j| ≤ γ−1,
and if j 
∈M ′ is (δ,+)-correct, then i is also (δ,+)-correct. Of course, after cleaning
outside M ′, i remains (δ,+)-correct for the partially cleaned configuration. Unfor-
tunately this is not strong enough, and one must require the stronger condition that
i is (δ̃,+)-correct, with δ̃ < δ, for the partially cleaned configuration outside M ′.
Therefore, in order to define the notion of a boundary of a configuration, one intro-
duces the family of subsets of L(l) which have the desired properties, and then shows
that this family of subsets is nonempty and stable for the intersection, so that one
can define the boundary of a configuration as the smallest element of this family.
The details are given in the next paragraph.

Let δ̃ ∈ (0, δ). For each σ ∈ Ω with |Iδ̃(σ)| <∞, let

E(σ) :=
{
M ∈ L(l) : M ⊃ [Iδ(σ)]γ−1 , M ⊃ [Iδ̃(σMσMc)]γ−1

}
.

(1) E(σ) is not empty. Indeed, let M0 := {[Iδ̃(σ)]R}l. If M0 = ∅ then Iδ̃(σ) =
Iδ(σ) = ∅ and any subset of Zd is in E(σ). If M0 
= ∅, then M0 ∈ E(σ), because
M0 ∈ L(l), M0 ⊃ [Iδ̃(σ)]γ−1 ⊃ [Iδ(σ)]γ−1 and M0 ⊃ [Iδ̃(σ)]γ−1 ⊃ [Iδ̃(σM0σMc

0
)]γ−1 by

lemma 5.2.
(2) E(σ) is stable by intersection. Indeed, let A,B ∈ E(σ). Then clearly A ∩ B ⊃
[Iδ(σ)]R; moreover, by lemma 5.2,

A ⊃ [Iδ̃(σAσAc)]R ⊃ [Iδ̃(σA∩Bσ(A∩B)c)]R ,

B ⊃ [Iδ̃(σBσBc)]R ⊃ [Iδ̃(σA∩Bσ(A∩B)c)]R .

Hence, one defines the boundary of the configuration σ as

I∗(σ) :=
⋂

M∈E(σ)

M .

The next property of I∗(σ) is essential to prove the Peierls condition: there are

sufficiently many δ̃-incorrect points in I∗(σ) for the partially cleaned configuration
σI∗σI∗c .

Lemma 5.3. There exists, in the 2γ−1-neighbourhood of each box C(l) ⊂ I∗(σ), a

point j ∈ I∗(σ) which is δ̃-incorrect for the configuration σI∗σI∗c.

Proof. Let C(l) ⊂ I∗(σ). First, suppose Iδ(σ) ∩ [C(l)]2γ−1 
= ∅. Then each j ∈
Iδ(σ) ∩ [C(l)]2γ−1 is δ-incorrect for σ, and hence δ̃-incorrect for σI∗σI∗c , since δ̃ < δ
and σ and σI∗σI∗c coincide on Bγ−1(j).
Suppose46 that [Iδ(σ)]γ−1 ∩ [C(l)]γ−1 = ∅, and that the statement is wrong, i.e.
Iδ̃(σI∗σI∗c) ∩ [C(l)]2γ−1 = ∅. Then, set I ′ := I∗\C(l) and show that I ′ ∈ E(σ),
a contradiction with the definition of I∗. First, I ′ ⊃ [Iδ(σ)]γ−1 . Using Lemma
5.2, I∗ ⊃ [Iδ̃(σI∗σI∗c)]γ−1 ⊃ [Iδ̃(σI′σI′c)]γ−1 . Since Iδ̃(σI∗σI∗c) ∩ [C(l)]2γ−1 = ∅ is

46Here I use the fact that A ∩ [B]2γ−1 = ∅ if and only if [A]γ−1 ∩ [B]γ−1 = ∅.
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equivalent to [Iδ̃(σI∗σI∗c)]γ−1 ∩ [C(l)]γ−1 = ∅, this implies that I ′ ⊃ [Iδ̃(σI′σI′c)]γ−1 ,
i.e. I ′ ∈ E(σ). �

Contrary to what happens in the standard theory of Pirogov-Sinai, it is less ob-
vious to characterize the set of configurations which have the same boundary. Let

A(σ) :=
{
σ′ : σ′

I∗(σ) = σI∗(σ), I
∗(σ′) = I∗(σ)

}
.

Let Λ#(σ) be the set of points of I∗(σ)c that are (δ,#)-correct for σ. By lemma 5.1
d(Λ+(σ),Λ−(σ)) > l, and Zd is partitioned into

Z
d = I∗(σ) ∪ Λ+(σ) ∪ Λ−(σ) .

Proposition 5.1. A(σ) = D(σ) if

D(σ) :=
{
σ′ : σ′

I∗(σ) = σI∗(σ), each i ∈ [Λ#(σ)]γ−1 is (δ,#)-correct for σ′} .
Proof. Let I∗(σ) 
= ∅ (otherwise the statement is obvious).
(1) Assume σ′ ∈ A(σ). Then I∗ ≡ I∗(σ) = I∗(σ′) ⊃ [Iδ(σ

′)]γ−1 , so that each
i ∈ [I∗c]γ−1 is δ-correct for σ′. Let A be a maximal connected component of [I∗c]γ−1 .
There exists i ∈ A such that i ∈ I∗, since by assumption I∗ 
= ∅. By lemma 5.1, it
suffices to show that i is (δ,+)-correct for σ if and only if it is (δ,+)-correct for σ′.
Assume this is not the case, e.g. suppose i is (δ,+)-correct for σ and (δ,−)-correct
for σ′, i.e

|B•
γ−1(i) ∩ {j : (σI∗σI∗c)j = −1}| ≤ δ̃

2
|B•

γ−1(i)|

|B•
γ−1(i) ∩ {j : (σ′

I∗σ
′
I∗c)j = +1}| ≤ δ̃

2
|B•

γ−1(i)| .

Since i ∈ I∗,

|B•
γ−1(i) ∩ I∗c| ≤ (1 − 2−d)|B•

γ−1(i)| .
Since σ′

I∗(σ) = σI∗(σ), one gets a contradiction (δ̃ < δ < 2−d),

|B•
γ−1(i)| = |B•

γ−1(i) ∩ I∗c| + |B•
γ−1(i) ∩ {j : (σI∗σI∗c)j = −1} ∩ I∗|

+ |B•
γ−1(i) ∩ {j : (σ′

I∗σ
′
I∗c)j = +1} ∩ I∗|

≤ (1 − 2−d + δ̃)|B•
γ−1(i)| < |B•

γ−1(i)| .

(2) Suppose σ′ ∈ D(σ). Since σ′ coincides with σ on I∗(σ) and all points of
[I∗(σ)c]γ−1 are δ-correct for σ′, Iδ(σ

′) = Iδ(σ). Thus I∗(σ) ⊃ [Iδ(σ)]γ−1 = [Iδ(σ
′)]γ−1 .

Then, since σI∗(σ)σI∗(σ)c = σ′
I∗(σ)σ

′
I∗(σ)c , one has

I∗(σ) ⊃ [Iδ̃(σI∗(σ)σI∗(σ)c)]γ−1 = [Iδ̃(σ
′
I∗(σ)σ

′
I∗(σ)c)]γ−1 .

Therefore I∗(σ) ∈ E(σ′), i.e. I∗(σ′) ⊂ I∗(σ). Assume I∗(σ)\I∗(σ′) 
= ∅. Using the
fact that σ and σ′ coincide on I∗(σ)\I∗(σ′), one has σI∗(σ′)σI∗(σ′)c = σ′

I∗(σ′)σ
′
I∗(σ′)c .

This gives, as above, I∗(σ′) ⊃ [Iδ̃(σ
′
I∗(σ′)σ

′
I∗(σ′)c)]γ−1 = [Iδ̃(σI∗(σ′)σI∗(σ′)c)]γ−1 . But

I∗(σ′) ⊃ [Iδ(σ
′)]γ−1 = [Iδ(σ)]γ−1 , so that I∗(σ′) ∈ E(σ), i.e. I∗(σ′) ⊃ I∗(σ). There-

fore σ′ ∈ A(σ). �

Definition 5.2. The connected components of the boundary I∗(σ) are the supports of
the contours of the configuration σ, and are written supp Γ1, . . . , supp Γn. A contour
is a couple Γ = (supp Γ, σΓ), where σΓ is the restriction of σ to Γ.
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The notions of label, external contour, interior of contour, compatibility of family
of contours, boundary condition of a contour are defined as in section 3. For each
contour Γ with boundary condition +, there exists a unique configuration σ[Γ],
which coincides with σΓ on the supp Γ, and which is equal to the labels of the
components of Z

d\supp Γ otherwise. I also denote, as before, supp Γ by Γ when no
confusion arise; in particular |Γ| ≡ | supp Γ|. Notice also that the distance between
the supports of two different contours of the same configuration is at least l.

5.3. Proof of the Peierls condition. Let Λ ∈ L(l) be a finite set, σΛ ∈ ΩΛ and
set σ := σΛ+Λc . Let

φij(σi, σj) := −1

2
Jγ(i− j)(σiσj − 1) and φij := φij(+,−) ≥ 0 .

The hamiltonian with boundary condition +Λc is

HΛ(σ) := HΛ(σΛ+Λc) =
∑

{i,j}∩Λ =∅
i=j

φij(σi, σj) +
∑
i∈Λ

u(σi) with u(σi) = −hσi .

One identifies I∗(σ) with I∗(σ) ∩ Λ, and Λ±(σ) with Λ±(σ) ∩ Λ. The hamiltonian
can be written in such a way that spins in regions Λ#(σ) are subject to an effective
external field U#.

The energy of the boundary of a configuration is by definition HI∗(σI∗σI∗c), and

HI∗(σI∗σI∗c) =
∑

Γ

(
‖Γ‖ +

∑
i∈Γ

u(σ[Γ]i)
)
,

where the sum is over contours of the configuration σ. The surface energy of Γ is
‖Γ‖; it is the same quantity as that of section 3.

Let h = 0 and I∗ = I∗(σ). HΛ(σ) −HI∗(σI∗σI∗c) is equal to

∑
#

( ∑
{i,j}⊂Λ#(σ)

φij(σi, σj)+
∑

i∈Λ#(σ)
j∈I∗

φij(σi, σj)+
∑

i∈Λ#(σ)
j ∈Λ

φij(σi,+)−
∑

i∈Λ#(σ)
j∈I∗

φij(#, σj)
)
.

Let i ∈ Λ+(σ). In the neighbourhood Bγ−1(i) of i, the majority of the spins are
+-spins. There is an effective field acting on the spin at i, which is at first approxi-
mation equal to ∑

j∈B•
γ−1 (i)

φij(σi,+) .

Therefore, if i or j ∈ Λ+(σ), then it is natural to decompose φij(σi, σj) as

φij(σi, σj) ≡ w+
ij(σi, σj) + φij(σi,+) + φij(+, σj) .

Notice that

w+
ij(σi, σj) := φij(σi, σj) − φij(σi,+) − φij(+, σj) =

{
−2φij if σi = σj = −1

0 otherwise.

Similarly, if i or j ∈ Λ+(σ), then

w−
ij(σi, σj) := φij(σi, σj) − φij(σi,−) − φij(−, σj) =

{
−2φij if σi = σj = 1

0 otherwise.
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Lemma 5.4. Define the potential

U#(σi) := u(σi) +
∑
j:j =i

φij(σi,#) = −hσi +
∑
j:j =i

φij(σi,#) .

Then

HΛ(σ) = HI∗(σI∗σI∗c) +
∑
#

( ∑
{i,j}∩Λ#(σ)=∅

i=j

w#
ij (σi, σj) +

∑
i∈Λ#(σ)

U#(σi)
)
.

The central result of this section is proposition 5.2.

Proposition 5.2. The surface energy satisfies the Peierls condition, i.e. there exists
ρ = ρ(δ̃, ν) > 0 such that for all contours Γ,

‖Γ‖ ≥ ρ|Γ| .
The constant ρ is independent of γ.

Remark. |Γ| is the total number of lattice sites contained in the support of Γ. The
support of a contour is a union of finitely many cubes of L(l). So

|Γ| ≥ (νγ−1)d .

Another way of measuring the size of supp Γ would be to count the number of cubes
C(l) contained in supp Γ. In this case, the Peierls condition would become

‖Γ‖ ≥ ρ′γ−d#{C(l) ⊂ supp Γ}
(with a different constant ρ′), and βγ−d could be interpreted as an effective temper-
ature for the system on the coarse-grained scale γ−1.

Proof. One first shows that the effective field acting on a spin i is Lipschitz (with
Lipschitz constant 2γ). Let σ ∈ Ω, i ∈ Zd, # ∈ {±}. Define

Vσ(i; #) :=
∑
j:j =i

φij(#, σj) .

Then, for |x− y| ≤ γ−1,

|Vσ(x; #) − Vσ(y; #)| ≤ γ|x− y| . (5.3)

Indeed, the difference Vσ(x; #) − Vσ(y; #) is equal∑
j∈Bγ−1 (x)

j ∈Bγ−1 (y)

φxj(#, σj) +
∑

j∈Bγ−1 (x)∩Bγ−1 (y)

(
φxj(#, σj) − φyj(#, σj)

)
−

∑
j∈Bγ−1 (y)

j ∈Bγ−1 (x)

φyj(#, σj) .

The middle sum vanishes; the first (last) sum can be estimated for |x−y| ≤ γ−1, by∑
j∈Bγ−1 (x)

j ∈Bγ−1 (y)

φxj(#, σj) ≤
|Bγ−1(x)| − |Bγ−1(x) ∩ Bγ−1(y)|

|B•
γ−1(0)| ≤ |x− y|

2γ−1
.

By lemma 5.3 there exists in the 2γ−1-neighbourhood of each C(l) ⊂ Γ a point
j ∈ Γ which is δ̃-incorrect for σ[Γ]. Let A be the set of all such points. One has
Γ ⊂ [A]l+2γ−1 . Let A0 be any 4γ−1-approximant of A, that is A0 ⊂ A, two points of
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A0 are at distance at least 4γ−1, and A ⊂ [A0]4γ−1 . Therefore Γ ⊂ [A0]l+6γ−1 . This
implies that

|Γ| ≤ |A0| |Bl+6γ−1(0)| . (5.4)

Since each i ∈ A0 is δ̃-incorrect for σ[Γ],

|B•
γ−1(i) ∩ {k : σ[Γ]k = +1}| > δ̃

2
|Bγ−1(i)| (i is not (δ̃,−)-correct),

and

|B•
γ−1(j) ∩ {k : σ[Γ]k = −1}| > δ̃

2
|Bγ−1(i)| (i is not (δ̃,+)-correct).

Hence, independently of the value of σi,

Vσ[Γ](i;−) >
δ̃

2
and Vσ[Γ](i; +) >

δ̃

2
. (5.5)

One has

‖Γ‖ ≥ 1

2

∑
i∈A0

∑
k∈Bγ−1 (i)∩Γ

∑
l:l =k

φkl(σ[Γ]k, σ[Γ]l)

=
1

2

∑
i∈A0

∑
k∈Bγ−1 (i)∩Γ

Vσ[Γ](k; σ[Γ]k)

≥ 1

2

∑
i∈A0

∑
k∈Bγ−1 (i)∩C

(l)
i

|k−i|≤ δ̃
4
γ−1

Vσ[Γ](k; σ[Γ]k) .

Using (5.3) and (5.5),

Vσ[Γ](k; σ[Γ]k) = Vσ[Γ](i; σ[Γ]k) +
(
Vσ[Γ](k; σ[Γ]k) − Vσ[Γ](i; σ[Γ]k)

)
≥ δ̃

2
− γ |k − i| ≥ δ̃

4
.

From this one deduces the existence of ρ > 0, independent of γ ∈ (0, γ0), such that
(see (5.4))

‖Γ‖ ≥ 1

2
|A0|

1

2d
|B δ̃

4
γ−1(0)| δ̃

4
≥ δ̃

2d+3
|Bl+6γ−1(0)|−1|Γ| |B δ̃

4
γ−1(0)| ≥ ρ|Γ| .

�

5.4. Restricted phases. The configurations of the restricted phases are those con-
figurations such that either all points are (δ,+)-correct or all points are (δ,−)-
correct. I consider the + case, the other case is similar. I first define the kind
of boundary conditions, which are admissible for the restricted partition functions
associated with these phases. Let Λ be a finite subset in L(l).

Definition 5.3. A boundary condition ηΛc ∈ ΩΛc is +-admissible if each i ∈ [Λ]γ−1

is (δ̃,+)-correct for the configuration +ΛηΛc.

A +-admissible boundary condition means that, when looked from any point i
inside of Λ, there is a majority of spins +1 on the boundary: for each i ∈ [Λ]γ−1,

|B•
γ−1(i) ∩B(ηΛc)| ≤ δ̃

2
|Bγ−1(i)| ,
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where
B(ηΛc) := {i ∈ Λc : (ηΛc)i = −1} .

Notice that the boundary condition specified by a contour on its interior is always
admissible. Let i ∈ [Λ]γ−1 , σΛ ∈ ΩΛ, and define

1i(σΛ) :=

{
1 if i is (δ,+)-correct for σΛηΛc ,

0 otherwise.

(ηΛc ∈ ΩΛc is a +-admissible boundary condition.) The configuration which are
allowed in a restricted phase are those verifying 1(σΛ) = 1, with

1(σΛ) :=
∏

i∈[Λ]γ−1

1i(σΛ) .

Set σ := σΛηΛc . The hamiltonian for the restricted system is the one obtained in
lemma 5.4 for a region of +-correct points. The restricted partition function with
boundary condition ηΛc is

Zr
+(Λ; ηΛc) :=

∑
σΛ∈ΩΛ

1(σΛ) exp
(
− β

∑
{i,j}∩Λ =∅

i=j

w+
ij(σi, σj) − β

∑
i∈Λ

U+(σi)
)
.

One shows that Zr
+(Λ) can be put in the form

Zr
+(Λ) = eβh|Λ|Z+

r (Λ) ,

where Z+
r (Λ) is the partition function of a polymer model47, having a normally

convergent cluster expansion in the domain

H+ =
{
h ∈ C : Reh > −1

8

}
.

The reason for logZr
+(Λ) to behave analytically at h = 0 is that the presence of

contours is suppressed by 1(σΛ), and that on each spin σi = −1 acts an effective
magnetic field

U+(−1) = h+
∑
j:j =i

φij = 1 + h ,

which is close to 1 when h is in a neighbourhood of h = 0.

I now explain how one can express the restricted partition function Zr
+(Λ) ≡

Zr
+(Λ; ηΛc) as the partition function of a polymer model. Complete details are

given in section 3 of [FrPf2].

The influence of a boundary condition can always be interpreted as a magnetic
field acting on sites near the boundary. One rearranges the terms of the hamiltonian
as follows: ∑

{i,j}⊂Λ
i=j

w+
ij(σi, σj) +

∑
i∈Λ

(
U+(σi) +

∑
j∈Λc

w+
ij(σi, (ηΛc)j)

)
.

By defining a new effective non-homogeneous magnetic field

µ+
i (σi) := U+(σi) + h +

∑
j∈Λc

w+
ij(σi, (ηΛc)j) ,

47Representation of partition functions by polymer models was introduced by Kunz, [Ku1] and
[GrKu], and [Ku2]. This is now a standard powerful method in statistical mechanics, which has
been also used in constructive field theory and especially in lattice gauge theories with great success.
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one can extract a volume term from Zr
+(Λ) and get Zr

+(Λ) = eβh|Λ|Z+
r (Λ), where

Z+
r (Λ) :=

∑
σΛ∈ΩΛ

1(σΛ) exp
(
− β

∑
{i,j}⊂Λ

i=j

w+
ij(σi, σj) − β

∑
i∈Λ

µ+
i (σi)

)
.

Notice that the field µ+
i (σi) becomes independent of ηΛc when d(i,Λc) > γ−1. Since

w+
ij(σi, σj) = 0, if σi = +1 or σj = +1, and µ+

i (+1) = 0, only the spins σi with
σi = −1 interact. The location of these spins are identified with the vertices of a

graph. For each vertex of this graph one has a factor e−βµ+
i (−1). When h ∈ H+,

Reµ+
i (−1) = 1 + 2Reh +

∑
j∈Λc

w+
ij(−, (ηΛc)j) ≥ 1 − 21

8
− δ̃ > 1

2
,

since δ̃ < 2−d. The formulation of Z+
r (Λ) in terms of polymers is a three step

procedure. One first expresses Z+
r (Λ) as a sum over graphs, satisfying a certain

constraint inherited from 1(σΛ). Then, one associates to each graph a spanning
tree and re-sum over all graphs having the same spanning tree. The weights of the
trees have good decreasing properties. Finally, the constraint is expanded, yielding
sets on which the constraint is violated. These sets are linked with trees. After a
second partial re-summation, this yields a sum over polymers, which are nothing
but particular graphs with vertices living on Zd and whose edges are of length at
most γ−1.

I. Let GΛ be the family of simple non-oriented graphs G = (V,E) where V ⊂ Λ,
each edge e = {i, j} ∈ E has d(i, j) ≤ γ−1. For e = {i, j}, set w+

e := w+
ij(−,−).

Notice that w+
e = −2φij ≤ 0. Define also µ+

i := µ+
i (−1). Expanding the product

over edges leads to the following expression

Z+
r (Λ) =

∑
G∈GΛ

1(V (G))
∏

e∈E(G)

(e−βw+
e − 1)

∏
i∈V (G)

e−βµ+
i ,

where 1(V ) := 1(σΛ(V )), and σΛ(V ) ∈ ΩΛ is defined by σΛ(V )i = −1 if i ∈ V , +1
otherwise. In terms of graphs, the constraint 1(V (G)) = 1 is satisfied if and only if∑

e={i,j}
j∈V (G)∪B

|w+
e | ≤ δ , ∀ i ∈ [Λ]γ−1 , where B := B(ηΛc).

Moreover, the fact that the boundary condition ηΛc is +-admissible means that∑
e={i,j}

j∈B

|w+
e | ≤ δ̃ , ∀ i ∈ [Λ]γ−1 .

II. One chooses a deterministic algorithm48 that assigns to each connected graph G0

a spanning tree T (G0), in a translation invariant way (that is if G′
0 is obtained from

G0 by translation then T (G′
0) is obtained from T (G0) by the same translation). The

algorithm is applied to each component of each graph G appearing in the partition
function. Let TΛ ⊂ GΛ denote the set of all forests. Then

Z+
r (Λ) =

∑
T∈TΛ

1(V (T ))
∏
t∈T

ω+(t) ,

48To be precise, one chooses the algorithm of chapter 3 of [Pf].
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where the product is over trees of T , and the weight of each tree is defined by

ω+(t) :=
∑

G∈GΛ:
T (G)=t

∏
e∈E(G)

(e−βw+
e − 1)

∏
i∈V (G)

e−βµ+
i .

Isolated sites {i} ⊂ Λ are also considered as trees. In this case, ω+({i}) = e−βµ+
i .

Lemma 5.5. Let T ∈ TΛ be a forest such that 1(V (T )) = 1. Then, uniformly in
h ∈ H+, for each tree t ∈ T ,

|ω+(t)| ≤
∏

e∈E(t)

(e−βw+
e − 1)

∏
i∈V (t)

e−
1
4
β .

III. The constraint 1(V (T )) depends on the relative positions of the trees. This
“multi-body interaction” is treated by expanding

1(V (T )) =
∏

i∈[Λ]γ−1

1i(V (T )) =
∏

i∈[Λ]γ−1

(1 + 1c
i(V (T ))) =

∑
M⊂[Λ]γ−1

∏
i∈M

1c
i(V (T )) ,

where 1c
i(V (T )) := 1i(V (T )) − 1. This yields

Z+
r (Λ) =

∑
T∈TΛ

∑
M⊂[Λ]γ−1

(∏
i∈M

1c
i(V (T ))

)(∏
t∈T

ω+(t)
)
.

Consider a pair (T,M). Let i ∈M . The function 1c
i(V (T )) is non-zero only when i is

not (δ,+)-correct; it depends on the presence of trees of T in the γ−1-neighbourhood
of i and possibly on the points ofB(ηΛc) if Bγ−1(i)∩Λc 
= ∅. To make this dependence
only local, one links the γ−1-neighbourhoods of the points of M with the trees of T
as follows.

(1) Let N = N(M) be the graph whose vertices are given by

V (N) :=
⋃
i∈M

Bγ−1(i) .

There is an edge between two vertices of N , x and y, if and only if 〈x, y〉 is a
pair of nearest neighbours of the same box Bγ−1(i) for some i ∈ M . The graph
N decomposes naturally into connected components (in the sense of graph theory)
N1, N2, . . . , NK . Some of these components can intersect Λc.

(2) One links trees ti ∈ T with components Nj ∈ N . To this end, one defines

an abstract graph Ĝ: to each tree ti ∈ T , one associates a vertex wi, and to
each component Nj one associates a vertex zj . The edges of Ĝ are defined by the

condition: Ĝ has only edges between vertices wi and zj , and this occurs if and

only if V (ti) ∩ V (Nj) 
= ∅. Consider a connected component of Ĝ, whose vertices
{wi1, . . . , wil, zj1, . . . , zjl

} correspond to a set P ′
l = {ti1, . . . , til , Nj1, . . . , Njl

}. One
changes P ′

l into a set Pl, using the following decimation procedure:

(a) if P ′
l = {ti1} is a single tree then Pl := P ′

l .

(b) if P ′
l is not a single tree, then

(b1) delete from P ′
l all trees tik that have no edges,

(b2) for all trees tik containing at least one edge, delete all edges e ∈ E(tik) whose
both end-points lie in the same component Njm.
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The resulting set is of the form Pl = {ts1, . . . , tsl
, Nj1, . . . , Njl

}, where each tree tsi

is a sub-tree of one of the trees {ti1 , . . . , til}. Pl is called a polymer. The decimation
procedure P ′

l ⇒ Pl is depicted on figure 5.

t1

t3
t4

t2

t5

t6

N1

N2

⇒

ts1

ts2

ts3

ts4

N1

N2

ts5

Figure 5: The decimation procedure P ′
l ⇒ Pl. The hatched polygons represent the body B(Pl)

and the legs are the trees {ts1 , ts2 , ts3 , ts4 , ts5}. Each tsj is a sub-tree of some ti.

The body of Pl is V (Nj1)∪ · · · ∪ V (Njl
); the legs of Pl are the trees {ts1 , . . . , tsl

}.
A polymer can have no body (in which case it is a tree of TΛ), or no legs (in which
case it is a single component Nj1). The support V (P ) is the total set of sites:

V (P ) :=
⋃

t∈L(P )

V (t) ∪
⋃
i

V (Ni) .

Often P also denotes V (P ). Two polymers are compatible if and only if V (P1) ∩
V (P2) = ∅, denoted P1 ∼ P2. Therefore, to each pair (T,M) there corresponds a
family of pairwise compatible polymers {P} := ϕ(T,M). The set of all possible
polymers constructed in this way is denoted by P+

Λ (ηΛc). The representation of
Z+

r (Λ) in terms of polymers is then

Z+
r (Λ) ≡ Zr(P+

Λ (ηΛc)) =
∑

{P}⊂P+
Λ (ηΛc )

compat.

∏
P∈{P}

ω+(P ) ,

where the weight is defined by

ω+(P ) :=
∑

(T,M):
ϕ(T,M)=P

(∏
i∈M

1c
i(V (T ))

)(∏
t∈T

ω+(t)
)
.

The weight ω+(P ) depends on the position of P inside the volume Λ, via the bound-
ary condition ηΛc .

Definition 5.4. The restricted pressures are defined by

p±r,γ := lim
Λ↑Zd

1

β|Λ| logZr
±(Λ;±Λc) ,

where the thermodynamic limit is taken along a sequence of cubes.
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The next step is to prove that one can apply the cluster expansion to the polymer
representation of the restricted partition function. I do not explain this technical
part. One proves the next lemma49.

Lemma 5.6. There exists c > 0, so that given ε > 0, there exists β(ε) with the
property that ∑

P :V (P )�0

sup
Reh>−1/8

|ω+(P )|ec|V (P )| ≤ ε ∀ γ ∈ (0, γ0) ,

provided that β ≥ β(ε).

I state the main result concerning the restricted phases and their analyticity prop-
erties, for the case # = +.

Theorem 5.3. Let β be large enough, γ ∈ (0, γ0), Λ ∈ L(l) and ηΛc be a +-admissible
boundary condition. Then

(1) Zr(P+
Λ (ηΛc)) has a cluster expansion that converges normally in {Reh > −1

8
}.

The maps h �→ logZr(P+
Λ (ηΛc)) and h �→ p+

r,γ(h) are analytic in {Reh > −1
8
}.

(2) There exists a function εr(β), verifying limβ→∞ εr(β) = 0, such that, uniformly
in h for Reh > −1

8
, ∣∣ logZr(P+

Λ (ηΛc))
∣∣ ≤ εr(β)|Λ| .

(3) Uniformly in h for Reh > − 1
16

,∣∣ d
dh

logZr(P+
Λ (ηΛc))

∣∣ ≤ εr(β)|Λ| .

(4) There exists a constant Cr > 0 such that for all integers k ≥ 2,

1

|Λ|

∣∣∣∣ dk

dhk
lnZr

+(Λ; ηΛc)

∣∣∣∣
h=0

≤ Ck
r k! , |p+(k)

r,γ (0)| ≤ Ck
r k! .

The main part of the analysis of the model is done in a finite volume, say a (large)
cubic box Λ in L(l). Let γ ∈ (0, γ0). Let50

Ω+
Λ := {σΛ ∈ ΩΛ : d(I∗(σΛ+Λc),Λc) > l} .

One defines
Z+(Λ) :=

∑
σΛ∈Ω+

Λ

e−βHΛ(σΛ+Λc) . (5.6)

For each σΛ ∈ Ω+
Λ , the decomposition of I∗(σΛ+Λc) into connected components

yields an admissible family {Γ}, such that Γ ⊂ Λ and d(Γ,Λc) > l for each Γ ∈ {Γ}.
Then, Λ is decomposed into Λ = {Γ} ∪Λ+ ∪Λ−, where Λ# are the points of Λ\{Γ}
that are (δ,#)-correct for the configuration σΛ+Λc . If in (5.6) one sums over all
configurations, which yield the same set of contours {Γ}, then one can write the
partition function Z+(Λ) as

Zr
+(Λ; +Λc)

∑
{Γ}⊂Λ

(∏
Γ∈{Γ} ρ(Γ)

)
Zr

+(Λ+; +Λcσ{Γ})Zr
−(Λ−; σ{Γ})

Zr
+(Λ; +Λc)

, (5.7)

49This is essentially lemma 3.5 in [Pf]. See also theorem 3.1 in [Pf].
50The condition d(I∗(σΛ+Λc),Λc) > l is convenient, but not really important. It is used in

[FrPf2].
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where the sum is over admissible families of contours, and

ρ(Γ) := e−βHΓ(σ[Γ]) .

The restricted phases induce an interaction among the contours, via the polymers.
One can write the partition function Z+(Λ) as

eβh|Λ|Z+
r (Λ) Ξ+(Λ) , (5.8)

where Ξ+(Λ) is the partition function of another polymer model, whose polymers
are connected objects, which are made of contours and polymers describing the
restricted phases. This is not immediate to obtain formula (5.8), but there is a
well-known procedure for doing this, starting with formula (5.7). Once this is done,
the analysis is similar to the analysis presented in section 4. Full details are given
in section 4 of [FrPf2].

I end this section by some final remarks about the restricted pressures. From the
full analysis one obtains the following expression for the pressure (see (5.8))

pγ(h) = p+
r,γ(h) + sing+

γ (h) if h ≥ 0. (5.9)

The term sing+
γ (h) is the contribution to the pressure, which is due to the presence

of contours, and is defined using Ξ+(Λ) in (5.8). It is this term which is responsible
for the absence of an analytic continuation of pγ at h = 0, because at h = 0, the
phase transition point, droplets of the −-phase, of arbitrary size, are stable. On the
other hand, when γ is small, sing+

γ (h) is small: if h+ > 0, then there exist constants
a and b, such that

|sing+
γ (h)| ≤ aebβγ−d

for all h, 0 ≤ h ≤ h+.

This follows from proposition 5.2 (read also the remark following this proposition).
In this sense the main contribution to the pressure is p+

r,γ. p
+
r,γ is the pressure of an

homogeneous state characterized by the fact that all spins are (δ,+)-correct.

By Hölder’s inequality, the restricted pressure p+
r,γ is a convex function of h,

h > −1/8. On Reh > −1/8, as a consequence of Vitali theorem, the family of
holomorphic functions {p+

r,γ}γ is a normal family, which converges as γ → 0. Fur-
thermore,

lim
γ→0

p+
r,γ(h) = pmf(h) if h ≥ 0.

Thus, the limiting function limγ→0 p
+
r,γ(h) gives the analytic continuation of the

mean-field pressure from h > 0 to −1/8 < h < 0. Let

m∗
r,γ ≡ m∗

r,γ(β) :=
d

dh
p+

r,γ(h)
∣∣
h=0

.

One has

lim
γ→0

m∗
r,γ(β, γ) = m∗

mf ,

wherem∗
mf is the mean-field spontaneous magnetization. Using a Legendre transform

one defines

f+
r,γ(m) := sup

h≥−1/8

(hm− p+
r,γ(h)) .

This defines a convex function on some interval (m′
γ, 1). Notice that, by definition of

m∗
r,γ, m �→ f+

r,γ(m) has a minimum at m∗
r,γ. Moreover, by the fundamental theorem
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on Legendre transform of convex functions,

p+
r,γ(h) := sup

m∈(m′
γ ,1)

(hm− f+
r,γ(m)) .

The part of the free energy f+
r,γ on (m′

γ , m
∗
r,γ) can be interpreted as a metastable

free energy, since it differs from the convex envelope of the mean-field free energy,
which is the equilibrium free energy. For γ sufficiently small the functions f+

r,γ are
defined on a common interval, say (m′, 1], such that m′ < m∗

mf . On that interval

lim
γ→0

f+
r,γ(m) = fmf(m) .

There are of course similar results for p−r,γ.
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6. Conclusions

The main results, theorems 2.1, 5.1 and 5.2, are proven only at low temperatures
and the proofs of these theorems used this fact heavily. However, the proofs of theo-
rems 2.1 and 5.2 have nice features. The validity of theorem 2.1 is based essentially
on the validity of the Peierls condition. It is evident from the proof of theorem
5.2 that the restriction to finite-range interactions is not necessary. It is also clear
that it is the presence of stable droplets of the other phase, with arbitrary sizes,
which prevents an analytic continuation of the pressure at the phase coexistence
point, although the occurrence of large droplets is rare. This confirms therefore the
arguments based on the droplet model. If k ∈ N is given (large enough), then a
very large stable droplet of volume V , whose boundary is a contour Γ, contributes
a factor

(β∆V )ke−β‖Γ‖

to the kth-derivative of the pressure. If the droplet has the largest volume, given

its surface energy ‖Γ‖, then V is of the order of ‖Γ‖ d
d−1 . Since xk d

d−1 e−x has its
maximum at x = k d

d−1
, if

k =

⌊
d− 1

d
β‖Γ‖

⌋
,

then this contribution is of the order of

Ckk!
d

d−1 .

If very large contours are suppressed, then there is an analytic continuation of the
pressure. This would also prevent the phenomenon of phase separation. This is pre-
cisely this phenomenon which is absent in a mean-field theory, in which equilibrium
states are pure homogeneous states. It is true that one can consider in such theory
interfaces and surface phenomena [vdW2] and [CHi]. However, one uses the unstable
part of the isotherms, which is even more difficult to justify than the metastable part
(see also below). Absence of analytic continuation and phase separation are linked
together. Is it possible to have a proof of the absence of analytic continuation, which
is based directly on the existence of the phenomenon of phase separation? Does the
absence of an analytic continuation imply phase separation (perhaps in some weak
sense only)?

An important question which remains unanswered is whether there is a possibility
of an analytic continuation across the line of phase coexistence51 in the complex
plane, which is defined in proposition 3.1 by

{z ∈ C : z = µ∗(ν; β) + iν ∀ ν ∈ R} .
Most of the analysis presented here can be carried out, but the point where the
proof fails is that the contributions of large and thin contours are not anymore of
the same sign. In [F] Fisher proved that a droplet model may have such an analytic
continuation. Langer in [La1] wrote a detailed paper on the analytic continuation
inside the complex plane. However, one should be aware that existence or not of
an analytic continuation is a very delicate question, as I have already shown in
this paper. It is possible to define another droplet model52 , where no analytic

51Here phase coexistence is defined by the fact that all contours are stable.
52J. Bricmont informed me about this model privately in 1993.
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continuation is possible. Consider the function f defined on {h ∈ C : Reh ≥ 0} by
the series

f(z) :=

∞∑
n=0

exp
(
− λnd−1 − hnd

)
where λ > 0 and d ≥ 2 (dimension).

The droplets are here cubic droplets of linear sizes n. This series is a so-called
lacunary series53, i.e. of the form

∞∑
m=1

amz
k(m) where z = e−h ,

with

k(m+ 1) − k(m) = (m+ 1)d −md → ∞ if m→ ∞ .

This series, as a consequence of a general theorem of complex analysis54, Fabry’s
theorem [Rem2], has {z ∈ C : |z| = 1} has its natural boundary. Hence f , as a
function of h, cannot be analytically continued from {h ∈ C : Reh > 0} across
Reh = 0. For a brief discussion of these questions see [P] p.274. Penrose pointed
out rightly in [P] that Langer’s derivation, however, uses the approximation of re-
placing an infinite series formula for the free energy of an Ising ferromagnet by the
corresponding integral. Since analytic continuation is a form of extrapolation, the
uncontrolled errors introduced by this approximation might have a profound effect
on the analytically continued free energy.

I have shown in these lectures that one cannot obtain analytic continuation of
the isotherms at low temperatures for a large class of lattice models. Thus, the
justification of the metastable part55 of the isotherms, as analytic continuation of
the equilibrium parts, which is often invoked, is wrong. On the other hand theorem
5.2 and its corollary show the role of the range of the interaction, and how analytic
continuation is restored in the van der Waals limit. Theorem 5.3 and the discussion
following it show that, if one is interested in the pressure and few derivatives of
the pressure only, then one can neglect, from a computational viewpoint, the part
sing+

γ , provided γ is small. The pressure for the restricted phase has an analytic

continuation, with an interaction of finite range γ−1, for all h such that Reh ≥ −1/8,
repectively all h such that Reh ≤ 1/8. This is in agreement with ideas put forward by

53A series
∑

n anz
λn is lacunary if limn n/λn = 0.

54For example, if one modifies the geometric series
∑

n z
n, by replacing it by the series

m∑
n=0

zn +
∑
k>m

zk2
(m arbitrary large)

then this series has the boundary of the unit disc as natural boundary.
55Van Hove’s paper [vH] excludes the possibility of justifying metastable isotherms in the ther-

modynamic limit using the basic principles of statistical mechanics, since the thermodynamic
potentials are convex. In [LanRu] Lanford and Ruelle give a similar result at the level of states of
the system. They show that for short range interactions the probability measures which are trans-
lation invariant solutions of the DLR equations are exactly the translation invariant states defined
by the variational principle. Consequently no solution of the DLR equation can be interpreted as
describing a metastable state. Assume that the pressure is not analytic at some activity z0. Then
the correlation functions of no state can be analytic in a neighbourhood U of z0 and in the same
time be solution of the DLR equations at some point of U . This result, however, does not give any
information about a possibility or impossibility of an analytic continuation of the pressure from
z < z0 to z > z0.
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Penrose and Lebowitz in their seminal paper about metastability [PLeb]. Notice that
one obtains only a metastable part for the pressure, since the restricted pressure p+

r,γ

is convex. If part of the following quotation of Lebowitz [Leb] has been clarified, the
principal problem, how to define metastable states precisely, with some justification
from first principles, is not yet completely solved. From [Leb]: the whole problem
of metastable states represents somewhat of an embarrassment to rigorous statistical
mechanics at the present time. For while the Van der Waals-Maxwell theory suggests
that these states are the “analytic continuations” of the equilibrium state there are
many who argue, Langer and Fisher among them, that this is one of the qualitative
features of the infinite-range potential limit which does not persist for finite-range
potentials. It is argued that in first-order phase transitions in real systems there is
an essential singularity blocking analytic continuation. Even if this argument should
turn out to be incorrect the question still remains of how to define (with or without
analytic continuation) metastable states precisely, with some justification from first
principles. As pointed out by Lebowitz a theory of metastability should describe the
familiar experimental facts about the large variety of metastable states occurring
in nature56. A complete theory of metastability must then describe both the static
properties of these states (there are metastable substances which are stable for
millions of years), as well as the dynamics of their persistence and decay. A recent
important work about rigorous treatment of metastability is [ScSh]; see also the
forthcoming book of Olivieri and Vares [OV].

For surface or interfacial phenomena, at equilibrium, one should in principle base
the whole theory on the partition function alone. This can be done in special
cases. For example, Abraham and Reed computed the magnetization profile for
a two-dimensional Ising model (see [AbRe]). Detailed study of this profile and of
the intrinsic thickness of the interface is also possible (at low temperatures) with
methods similar to those developed in these lectures [BrLebPf]. See [PfV] for an-
other example of a surface phenomenon, the wetting of a wall. Nevertheless, such
approaches are often difficult to implement, and therefore one needs approximate
theories in which explicit results can be obtained. In this respect it would be useful
to clarify the status of Cahn-Hilliard theory [CHi], which has been initiated by van
der Waals [vdW2]. This type of theory is widely used today and is a successful
approach. In most cases, the free energy functional, which is non-convex below

56One should also not forget that the notion of “equilibrium” is a theoretical notion. The follow-
ing quotation from Callen’s book on Thermodynamics is pertinent. From [Ca] p.15: In actuality,
few systems are in absolute and true equilibrium. In absolute equilibrium all radioactive materials
would have decayed completely and nuclear reactions would have transmuted all nuclei to the most
stable of isotopes. Such processes, which would take cosmic times to complete, generally can be
ignored. A system that has completed the relevant processes of spontaneous evolution, and that can
be described by a reasonably small number of parameters, can be considered to be in metastable
equilibrium. Such a limited equilibrium is sufficient for the application of thermodynamics.
In practice the criterion for equilibrium is circular. Operationally, a system is in equilibrium state
if its properties are consistently described by thermodynamics theory! It is important to reflect
upon the fact that the circular character of thermodynamics is not fundamentally different from
that of mechanics.

In [Fe], p.1, Feynman defines the notion of thermal equilibrium as follows: If a system is very
weakly coupled to a heat bath at a given “temperature,” if the coupling is indefinite or not known
precisely, if the coupling has been on for a long time, and if all the “fast” things have happened
and all the “slow” things not, the system is said to be in thermal equilibrium.
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the critical temperature, is treated as a given phenomenological quantity. Is Cahn-
Hilliard theory only a mean-field type theory? Can it be derived as approximate
theory in some controlled way for some systems with finite-range interactions? The
justification of these non-convex functionals in Cahn-Hilliard theory is discussed by
Langer in [La2]. The argumentation does not differ very much from the ideas of van
Kampen [vK]. It is a coarse-grained approach. One point is worth mentioning in
Langer’s argumentation about the size for the coarse-graining cells: they should be
neither too small, nor too large so that phase separation cannot occur within single
cells. For more details the reader is referred to [La2].
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